OpenShift Environment

Installations for OpenShift environment

Introduction

This document walks through the installation procedure for Seldon Enterprise Platform v2.1.0 onto Red Hat OpenShift (RHOCP) v4.13.

Note: These instructions have been tested on OpenShift 4.13. These instructions work on OpenShift versions 4.10 - 4.13 only.

The prerequisites for the installation are aligned with usual requirements for installation / configuration of operators on the Red Hat OpenShift platform:

  • Access to the OpenShift Container Platform web console.

  • An account with the cluster-admin role.

  • Being logged in to the OpenShift Container Platform cluster as an administrator.

Note: Whenever a (*) symbol is present next to an operator version it indicates a version available in Operator Hub at the moment of writing this documentation. When following this guide the available or default versions of operators may be different. These versions are noted here for information purposes only and upstream OpenShift documentation should be consulted when in doubts.

Preparation

Creating the Seldon Namespaces

Seldon Enterprise Platform has a number of namespaces which it expects to be present, and associated with given labels.

The first namespace to create is where the Seldon Enterprise Platform controller pod will run. This is the main orchestrator of the Seldon technology stack, and expects to run in the seldon-system namespace.

oc create namespace seldon-logs
oc create namespace seldon-system

Next, create a namespace within which models can be deployed. In this documentation this is going to be called seldon, however can be configured to any name of your choosing. Create the namespace, and then add the seldon.restricted label so SD has access to it.

oc create namespace seldon
oc label namespace seldon seldon.restricted=false --overwrite=true

Dependencies

OpenShift Service Mesh

The first step within the installation process is to add OpenShift Service Mesh. This is required for the networking of all other pieces within the Seldon Enterprise Platform stack, as well as the ingress/egress for model endpoints.

Note: Istio (OpenShift Service Mesh) is an external component outside of the main Seldon stack. Therefore, it is the cluster administrator's responsibility to administrate and manage the Istio installation used by Seldon.

Adding Operators

The initial action taken is to add the relevant operators required for the logging stack. Log into the RHOCP console and navigate to the OperatorHub, within the Operators tab.

Search for and install the following operators, with the default options:

  1. Red Hat OpenShift distributed tracing platform (provided by Red Hat) (1.39.0-3*)

  2. Kiali Operator (provided by Red Hat) (1.57.3*)

  3. Red Hat OpenShift Service Mesh (provided by Red Hat) (2.3.0*)

Configuring the ServiceMeshControlPlane

Next, configure the ServiceMeshControlPlane. Ensuring Control Plane in Version v2.0 is installed and the control plane is created within the istio-system namespace, as per the OpenShift documentation.

Add Namespaces to ServiceMeshMemberRoll

Navigate to the Red Hat OpenShift Service Mesh operator under your installed operators. Select the Istio Service Mesh Member Roll tab and create a new ServiceMeshMemberRoll in istio-system namespace with the following namespaces added to the member roll:

  • seldon

  • seldon-logs

  • seldon-kafka

  • seldon-system

Note: this is easiest done using the YAML editor.

Create Seldon’s Istio Gateway

Seldon then requires an Istio gateway to allow traffic to and from the SD controller pod as well as to enable advanced routing features like canary and shadow deployments. Create a following YAML manifest called in this example istio-gateway.yaml:

Apply it with

Create SSL Secure Route

OpenShift clusters usually come with Let's Encrypt certificates enabled for default ingress domain. One can create Route with the tls.termination: edge in order to re-use these certificates. Create the following YAML manifest called seldon-route.yaml:

To display your default ingress domain, run the following command:

After using it in the above manifest in place of <Ingress_Domain> your Istio Ingress will be exposed under

Note: This setup terminates the SSL on edge and provides non-SSL in-cluster traffic.

Apply the above manifest with

OpenShift Serverless

Seldon Enterprise Platform uses OpenShift Serverless, in the form of Knative Serving and Knative Eventing, to power many of the advanced monitoring components associated with your deployments; namely outlier and drift detection. Without this component these features will fail to function within the platform.

Note: Knative is an external component outside of the main Seldon stack. Therefore, it is the cluster administrator's responsibility to administrate and manage the Knative installation used by Seldon.

Serverless Operator

Once more, navigate to the Operator Hub and install the official Red Hat OpenShift Serverless (1.26.0*) operator. Install using the default options.

Install Knative Eventing

Using the Serverless Operator, and as per the OpenShift documentation, install an instance of Knative Eventing.

Install Knative Serving

Using the Serverless Operator, and as per the OpenShift documentation, install an instance of Knative Serving.

Logs Namespace and Broker

The Knative events which activate the outlier and drift detectors in the form of Knative served pods are reliant on events from the Seldon logging stack. The Seldon logging stack is installed into the seldon-logs namespace with a Knative Eventing Broker configured within it.

If you did not create this namespace yet create it now

Create the Knative Eventing Broker, eventing-broker.yaml

and apply it with

Add NetworkPolicy Resources

Finally, we need to add a couple of NetworkPolicy resources to ensure that traffic can flow from Knative Eventing and Serving to the different Seldon namespace:

Seldon Logs Namespace

To allow traffic from Knative Eventing into the Seldon Logs namespace we will create a NetworkPolicy resource. Create networkpolicy-seldon-logs.yaml:

and apply it with

Model Namespaces

For each model namespace, we will need to create a couple of NetworkPolicy resources to ensure that traffic from both Knative Eventing and Serving can go into our model namespace. For this, first create a file named networkpolicy-detectors.yaml with the following resources:

You can then apply these to your model namespace as:

Then apply it to the seldon namespace:

Elasticsearch

Elasticsearch is responsible for storing all requests and responses sent to the machine learning models hosted within Seldon Enterprise Platform. Requests and responses are forwarded to Elasticsearch by the Seldon request logging component, which also runs within the seldon-logs namespace.

Elasticsearch also stores the container logs of all running models and monitoring components hosted within Seldon Enterprise Platform. These are forwarded to Elasticsearch by Fluentd.\

Elasticsearch is an external component outside the main Seldon stack. Therefore, it is the cluster administrator's responsibility to administrate and manage the Elasticsearch instance used by Seldon.

Installing the ECK Operator

The first step to configure Elasticsearch is to add the Elasticsearch (ECK) Operator (2.5.0*) from within the Operator Hub. This operator should be installed with default options, with access to all namespaces.

Create the Elasticsearch Cluster

Navigate to the Elasticsearch (ECK) Operator operator under your installed operators. Select the Elasticsearch Cluster tab and create a new cluster in seldon-logs namespace called elasticsearch-seldon using 8.7.x version:

Note: Currently, Seldon guarantees compatibility with Elasticsearch 7.X. Compatibility with Elasticsearch 8.X is not guaranteed.

Add NetworkPolicy Resource

You need to add the below NetworkPolicyresource in the seldon-logs namespace to ensure that traffic can flow between the seldon-logs namespace and openshift-operators, where the ECK operator is running. For this, first create a file named networkpolicy-seldon-elastic.yaml with the following resource:

Granting Access to Elasticsearch

In order for Seldon Enterprise Platform to access the Elasticsearch cluster there are two secrets which are required to be created. One secret in the seldon-logs namespace to allow access to the cluster for the request logger component. The other in the seldon-system namespace where the Seldon Enterprise Platform pod will be installed.

Grab the Elasticsearch password and assign it to a variable for later use.

Create the secret in the seldon-logs namespace:

Create the secret in the seldon-system namespace:

Container Logs Forwarding

To enable container logs visibility in Seldon Enterprise Platform we use OpenShift Logging.

Installing OpenShift Logging Operator

Follow OpenShift documentation to install Red Hat OpenShift Logging (5.5.5*) operator.

Installing ClusterLogging Component

Note: As we will be forwarding logs to the Elastic instance elasticsearch-seldon in seldon-logs namespace you can disable the internal Elasticsearch logStore and Kibana visualization components from the ClusterLogging custom resource (CR). Therefore installation of the OpenShift Elasticsearch Operator is not required.

Navigate to the Red Hat OpenShift Logging operator under your installed operators. Select the Cluster Logging tab and create an instance containing at minimum the fluentd logs collection:

Installing ClusterLogForwarder Component

First we need to create seldon-elasticsearch secret that fluentd will use to authenticate with our instance of Elastic.

Fetch elastic password

Fetch the required ca-bundle certificates

Create the secret in the openshift-logging namespace:

Navigate to the Red Hat OpenShift Logging operator under your installed operators. Select the Cluster Log Forwarder tab and create an instance forwarding logs to our Elastic instance.

For further details refer to OpenShift documentation.

Finally, we need to add NetworkPolicy to allow traffic from openshift-logging into seldon-logs namespace. Create networkpolicy-seldoncontainerlogs.yaml with following resource:

and apply it with

OpenShift Monitoring

OpenShift provides an out of the box monitoring stack consisting of Prometheus and Thanos, alongside the Prometheus AlertManager. This stack is configured to monitor the standard OpenShift workloads, but can be extended to collect the metrics which Seldon Enterprise Platform produces. This is done through adding a PodMonitor component to any of the namespaces where Seldon models are expected to be running.

Configuring Cluster Monitoring Stack

First, check that the OpenShift cluster has the correct configuration applied in order to monitor the standard workloads it expects to. This can be done by following the relevant OpenShift documentation.

Once cluster wide monitoring has been set up, the next configuration to add is that for user defined workloads - such as Seldon Enterprise Platform. The steps are very similar to cluster monitoring configuration, and can be completed by following the user defined workload monitoring documentation available here.

By following the OpenShift documentation you should now have these two ConfigMaps created with enableUserWorkload enabled:

and that Prometheus pods in openshift-user-workload-monitoring namespace are running

Providing Seldon Enterprise Platform Access to Prometheus

Seldon Enterprise Platform requires a token in order to access Prometheus. This can be configured by following the steps documented here.

Obtain the authentication token and save it to the text file:

Finally, apply the token as a secret within the seldon-system namespace. This is the secret with which Seldon will authenticate itself against the Prometheus instance:

Note: Depending on the permissions of the token used above different metrics and alerts will be available for Seldon Enterprise Platform to use and display.

Adding Network Access Policies

The next step in configuring the monitoring services is to add NetworkPolicy that will allow for ingress from openshift-user-workload-monitoring namespace to any namespace containing seldon specific deployments.

Create networkpolicy-monitoring.yaml file:

Apply this policy to seldon-system namespace:

You also must apply this policy to all namespaces hosting Seldon models:

Apply it to the seldon namespace now:

Adding the Seldon Enterprise Platform PodMonitor

First, we add PodMonitor for metrics exposed directly on Seldon Enterprise Platform pod. Create deploy-podmonitor.yaml file:

And apply it with

For any of the namespaces which Seldon Enterprise Platformed models are going to run within there needs to be a couple of PodMonitor resources created within that namespace. Create file seldon-podmonitor.yaml:

and apply it to all namespaces hosting Seldon models:

Apply it to seldon namespace now

Adding the PrometheusRules for Model Usage

For any of the namespaces which Seldon Enterprise Platformed models are going to run within there needs to be a PrometheusRule resource created within that namespace.

Create file deployment-usage-rules.yaml which content you can find in the appendix at the end of this document. You must apply it to all namespaces that will host SeldonDeployment models

Apply it to seldon namespace now

Adding the PrometheusRules for Alerting

The alerting functionality can be configured through PrometheusRules resources.

Create files user-alerts.yaml, infra-alerts.yaml and drift-alerts.yaml which contents you can find in the appendix at the end of this document.

Apply them to seldon-system namespace:

Once OpenShift reconciles the relevant configuration changes you can verify in the Admin UI -> Observe -> Alerting -> Alerting rules that TestAlertNoActionRequired rule was created (you may need to disable Platform filter to find it).

Configuring Seldon Enterprise Platform as receiver of Alertmanager

The OpenShift documentation explains how to configure alert receivers. This can be done either:

  • using OpenShift Container Platform web console

  • using CLI to modify main alertmanager-main secret in openshift-monitoring namespace

  • creating AlertmanagerConfig custom resource (alpha preview of OpenShift feature)

Use a following configuration as an example

And if you have OIDC provider configured

PostgreSQL for Model Catalogue

The Model Catalog acts as a registry for all models deployed onto the Seldon platform, where additional metadata can be added to allow for faster deployment, easier model re-use and provenance of metadata across your experimentation, deployment and monitoring tools. The Model Catalog persists this metadata within an instance of PostgreSQL.

Note: PostgreSQL is an external component outside of the main Seldon stack. Therefore, it is the cluster administrator's responsibility to administrate and manage the PostgreSQL instance used by Seldon.

The PostgreSQL documentation page contains extensive information how to configure connection to managed postgres solution. In the document here we will give an example using the built-in PostgreSQL application template provided by RHOCP.

Creating built-in PostgreSQL instance

Note: These instructions will help you to quickly spin up a PostgreSQL instance. However, we don't recommend using it in a production context, and should be treated as development-only.

To create postgres instance

Once the template is instantiated, the following Openshift/Kubernetes resources will be created to support the Model Catalog:

  • DeploymentConfiguration

  • ReplicationController

  • Postgresql pod

  • Service

  • PersistentVolumeClaim

Adding Secrets

Seldon Enterprise Platform needs to be able to authenticate to the PostgreSQL instance, and therefore a secret is created called metadata-postgres using the below command.

Argo CD

Seldon Enterprise Platform leverages GitOps to ensure an up-to-date declarative representation of model deployments. GitOps enables changes in deployments to be tracked and deployments to be rolled back to previous states- via commits to a Git repository. The Git repository stores the SeldonDeployments which describe how to create the machine learning models on the Kubernetes cluster.

Red Hat OpenShift provides a GitOps operator, which is built on top of ArgoCD and provides an easy to install and maintain component for enabling GitOps workflows. This installation will leverage the OpenShift GitOps Operator to enable Seldon’s own GitOps functionality.

Prepare Seldon Namespace for GitOps

Each namespace in which Seldon models are meant to be deployed using GitOps needs to specially prepared. Here we will provide example for namespace called seldon-gitops:

The above configures the seldon-gitops namespace to be recognized as gitops-enabled by Seldon Enterprise Platform. Assuming that we install ArgoCD instance into the seldon-argocd namespace we need to allow seldon-gitops namespace to be managed by it:

In addition, for every new namespace we need

Installing the OpenShift GitOps Operator

The first step to configure GitOps is to add the Red Hat OpenShift GitOps (1.7.0*) operator from within the Operator Hub. This operator should be installed with default options. Please follow OpenShift documentation here.

The OpenShift GitOps Operator automatically creates an ArgoCD instance in the openshift-gitops namespace. You can use this ArgoCD instance or create a new one as we describe in the next section.

Creating ArgoCD Instance

For purpose of this documentation we will use a new ArgoCD instance. First create a new project/namespace:

Then, create a new Argo CD instance dedicated to Seldon following the OpenShift documentation. We recommend to make following changes to the Argo CD instance using the YAML editor:

Explanation:

  • spec.server.route.tls.termination: this can be set to re-use the SSL certificates as we did when setting seldon-route in the istio-system namespace

  • spec.server.rbac.policy: the default value there reads system:cluster-admins which in certain configurations does not provide expected admin access

Note: the above definition enables Dex OpenShift OAuth Connector that allows you to log into ArgoCD using OpenShift OAuth. OpenShift admin user (belonging to cluster-admins) group will have admin privileges in ArgoCD UI.

Your ArgoCD instance will now be available under

Configuring Git Repository (Seldon Enterprise Platform)

To configure our Git credentials in Seldon Enterprise Platform, we will follow these steps:

  1. Create a Kubernetes secret containing our credentials, either as a SSH key or a User / Password combination. This secret can have any arbitrary name, but must live in the same namespace as Seldon Enterprise Platform.

If the private key is present under $GIT_SSH_PATH, you can create the credentials secret as:

The passphrase field can be left empty if they SSH key doesn't have a passphrase.

  1. Make sure that Seldon Enterprise Platform's configuration point to our newly created secret. In particular, we verify the gitops section of the values of the Seldon Enterprise Platform Helm chart. Here, we need the gitops.argocd.enabled flag be to true, and the gitops.git.secret field to point to the right secret name. The Helm installation of Seldon Enterprise Platform is described in section further down in this document and the Helm values provided there already have GitOps enabled.

Configuring Git Repository (ArgoCD)

There are multiple ways in which git repository can be configured in ArgoCD. One of easiest way is to use ArgoCD UI logged in as an admin user.

Here, we provide example of configuring the repository using declarative approach assuming user/password authentication over HTTPS:

For more examples refer to ArgoCD documentation.

ArgoCD Project

There are multiple ways in which AppProject can be created: OpenShift UI, ArgoCD UI or declaratively.

Create a following AppProject:

ArgoCD Application

Note: If your ArgoCD application does not follow the seldon-gitops-${namespace} naming convention, you can label the namespace accordingly:

Kafka

Note: Kafka is an external component outside of the main Seldon stack. Therefore, it is the cluster administrator's responsibility to administrate and manage the Kafka installation used by Seldon.

Install Kafka Operator

The first step to install Kafka is to install an operator that can manage Kafka cluster.

Add the Red Hat Integration - AMQ Streams (2.2.0-4*) operator from within the Operator Hub. This operator should be installed with default options. AMQ Streams is based on Strimzi Operator and can read more about it in the Red Hat documentation here.

Create Kafka Cluster

Once we have Strimzi (Strimzi provided by Strimzi or AMQ Streams provided by Red Hat) operator up and running we need to create Kafka cluster.

Create seldon-kafka namespace for our Kafka cluster

Make sure that seldon-kafka namespace is added to Service Mesh Member Roll as described in OpenShift Service Mesh section.

Select seldon-kafka project and navigate to your Kafka operator under your installed operators. Select the Kafka tab and create the Kafka cluster. Following is a minimal required configuration.

Seldon Core V1

Seldon Core is used to serve machine learning models over REST and gRPC endpoints, using a variety of advanced deployment strategies (canaries, shadows, A/B, multi-armed bandits).

Seldon Core (v1.16.0) is available as an operator within the Operator Hub and can therefore be readily installed onto OpenShift.

Once the operator has been installed there are a number of configuration changes required to ensure smooth interaction with the wider environment of tools. This can be achieved by editing the operator’s ClusterServiceVersion in the YAML tab of newly installed operator.

The configuration parameters to edit are the deployment environment variables:

  • ISTIO_ENABLED set to true

  • EXECUTOR_REQUEST_LOGGER_DEFAULT_ENDPOINT set to http://broker-ingress.knative-eventing.svc.cluster.local/seldon-logs/default

Seldon Core v2

Seldon Core v2 can be installed using published Helm charts. To add Helm charts run:

The Seldon Core v2 installation consists of a few different components, each of these having its own corresponding Helm chart.

Helm Chart
Description
Recommended Namespace

seldon-core-v2-crds

CRDs defining Core v2 resources

default or seldon-system

seldon-core-v2-setup

Core v2 configuration chart (operator, templates, RBAC)

seldon-system for cluster-wide installation, or each model namespace for namespaced installations, e.g. seldon

seldon-core-v2-runtime

Seldon Runtime defines core components required in each model namespace

each model namespace, e.g. seldon

seldon-core-v2-servers

Seldon Core v2 pre-configured servers to host your models (optional)

each model namespace, e.g. seldon

Installation Modes

Seldon Core v2 supports both cluster-wide and namespaced installations:

  • In cluster-wide mode, we recommend installing the seldon-core-v2-setup Helm Chart into the seldon-system namespace. The operator will then reconcile Core v2 resources like SeldonRuntime, Server, Model, and Pipeline in all namespaces.

  • In namespaced mode, you must install the seldon-core-v2-setup Helm chart into each model namespace. Each operator will then reconcile Core v2 resources only in the namespace it is installed in itself.

Cluster-wide installation of Seldon Core v2 is only available from version 2.6.0 onwards. Installation of the Seldon Core operator into the seldon-system namespace (i.e. the same namespace as Core v1) is only available from version 2.7.0.

For a namespaced installation, we will use seldon as an exemplary namespace throughout this page to install Core v2. You'd have to repeat these steps for each namespace you want to use Core v2 in. In case of a cluster-wide installation, the seldon namespace is an exemplary namespace for only the Seldon Runtime and Servers.

CRDs

Install Seldon Core v2 CRDs with:

Operator

The Seldon Core v2 operator (seldon-core-v2-setup Helm chart) can be installed either in cluster-wide or namespaced mode.

  1. Prepare the required namespaces with:

  1. Create components-values.yaml file that we will use to configure the installation. The values below are meant as a starting point and should be edited where necessary:

3. Conduct Helm installation with:

Visit our Kafka Integration page for more information on configuring an integration with managed Kafka solutions.

Seldon Runtime

Conduct Helm installation of Seldon Runtime for Seldon Core v2 with:

Servers

In order to run models, you will need to provision a server or more. As a convenience for getting started, you can install pre-configured Seldon Core v2 Servers. To do this, we first need to create servers-values.yaml that we will use to configure the installation. Create servers-values.yaml file (below are just the default values, adjust them to your needs):

and conduct Helm installation with:

Validation

You should see a pod like the following running in the seldon-system namespace:

And also pods like the following running in the seldon namespace:

In case of namespaced installation, the seldon-v2-controller-manager pod (with a hash suffix) will be found in seldon namespace.

Adding new namespaces

Do not need to install the CRDs again as these are global resources.

To install Seldon Core v2 in additional namespaces, you need to do these steps:

  1. Create the new namespace

  2. Install the runtime and servers into new the namespace

Metrics Monitoring

To configure metrics collection on the Seldon Core v2 components, please create the following PodMonitor resources in the seldon namespace:

Seldon Mesh

Seldon Core v2 inference API is exposed via envoy on seldon-mesh service in seldon namespace

To expose this service via Istio you need to create a following VirtualService. Create seldon-mesh-vs.yaml file

and apply it with

Note:

To send HTTP requests to Seldon Mesh you will need to set two headers: -H "namespace:<namespace>" -H "inference:seldon-mesh" to reach Seldon Mesh in given namespace. For example to reach iris pipeline in seldon namespace:

Seldon Enterprise Platform

Installation

  1. Download the seldon-deploy-install.tar file that contains required installation resources. For example, to download the installation resources for version 2.4.0 of Seldon Enterprise Platform run the following:

  2. Extract the contents of the seldon-deploy-install.tar file.

Seldon Enterprise Platform relies on Helm charts to perform the installation. There is a master configuration file which contains all of the relevant Helm values for the given installation, in the appendix of this document there is the recommended Helm values for the installation of Seldon Enterprise Platform on OpenShift. Save these values as values-openshift.yaml and then run the following helm command to install Seldon Enterprise Platform.

Obtaining ingress URL

Once the Seldon Enterprise Platform pods have come up, the UI can be accessed by running the following command, and entering the resultant URI into the browser.:

Appendix

Adding new namespace for Seldon Enterprise Platform

  1. To add a new namespace for Seldon Enterprise Platform to use called my-new-namespace do

  2. Add namespace to ServiceMeshMemberRoll as described in OpenShift Service Mesh section.)

  3. If the new namespace is meant to be gitops-enabled (recommended) follow steps described in Argo CD section:

    • add seldon.gitops=enabled label

    • add git-repo annotation

    • add argocd.argoproj.io/managed-by label

    • update AppProject with new namespace entry

    • create new Application resource

  4. If you specified explicitly namespaces in the ClusterLogForwarder config you need to add new namespace to the list.

  5. Install Seldon Core v2 in the new namespace. Note that, when following the instructions, you will need to replace seldon for the new namespace name (e.g. my-new-namespace).

Validating Installation

This subsection describes basic validation steps for the Seldon installation.

Validating Ingress

Verify that Istio Gateway and Route for Seldon is created with

Validating Serverless

Verify that Broker exist and is in READY state with

Validating NetworkPolicy resources

Verify that following NetworkPolicy resources exist in seldon-system and seldon-logs namespaces:

Verify that in every namespace with your Seldon models a following NetworkPolicy resources exist:

Validating Monitoring Resources

Verify that following PodMonitor and PrometheusRules exists in seldon-system namespace:

Verify that following PodMonitor and PrometheusRules exist in every model namespace:

Validating Kafka

Verify that following pods are present in seldon-kafka namespace:

Validating Seldon Core v2

Verify that following pods are present in your model namespace, e.g. seldon:

Seldon Enterprise Platform Helm Values

This set of Helm values of Seldon Enterprise Platform is designed to work properly on the OpenShift 4.13 platform with all dependencies installed and configured as described in this document.

Note:

  • Only set Namespace Authorization using labels (rbac.nsLabelsAuth.enabled: true entry) in your Helm values file if you are not going to use OPA Policy Authorization.

  • Contact your Seldon account manager or sales representative to access the image.

Prometheus Rules for Model Usage

Save file as deployment-usage-rules.yaml:

Prometheus Rules for Alerting

Save file as user-alerts.yaml:

Save file as infra-alerts.yaml:

Save file as drift-alerts.yaml:

Troubleshooting

Core v2 Pipelines

If you see an error from the producer in the Pipeline gateway complaining about not enough insync replicas then the replication factor Seldon is using is less than the cluster setting for min.insync.replicas which for a default AWS MSK cluster defaults to 2. Ensure this is equal to that of the cluster. This value can be set in the seldon-charts/seldon-core-v2-setup Helm chart with kafka.topics.replicationFactor.

Prometheus Metrics

If you do not see any metrics in Seldon Enterprise Platform first check if all NetworkPolicy, PodMonitor and kind: PrometheusRule resources are configured correctly. If you still do not see any metrics verify if JWT token given to Seldon Enterprise Platform is correct.

To verify token

Elasticsearch

To verify Elasticsearch credentials and if Seldon indices are being populated:

Get token from Elastic secret (user is "elastic")

Verify that secret matches

and

Verify credentials and indices

Last updated

Was this helpful?