alibi_detect.cd.tensorflow.preprocess

HiddenOutput

Inherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable

Constructor

HiddenOutput(self, model: keras.src.models.model.Model, layer: int = -1, input_shape: tuple = None, flatten: bool = False) -> None
Name
Type
Default
Description

model

keras.src.models.model.Model

layer

int

-1

input_shape

Optional[tuple]

None

flatten

bool

False

Methods

call

call(x: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]) -> tensorflow.python.framework.tensor.Tensor
Name
Type
Default
Description

x

Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Returns

  • Type: tensorflow.python.framework.tensor.Tensor

UAE

Inherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable

Constructor

UAE(self, encoder_net: Optional[keras.src.models.model.Model] = None, input_layer: Union[keras.src.layers.layer.Layer, keras.src.models.model.Model, NoneType] = None, shape: Optional[tuple] = None, enc_dim: Optional[int] = None) -> None
Name
Type
Default
Description

encoder_net

Optional[keras.src.models.model.Model]

None

input_layer

Union[keras.src.layers.layer.Layer, keras.src.models.model.Model, None]

None

shape

Optional[tuple]

None

enc_dim

Optional[int]

None

Methods

call

call(x: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, Dict[str, tensorflow.python.framework.tensor.Tensor]]) -> tensorflow.python.framework.tensor.Tensor
Name
Type
Default
Description

x

Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, Dict[str, tensorflow.python.framework.tensor.Tensor]]

Returns

  • Type: tensorflow.python.framework.tensor.Tensor

Functions

preprocess_drift

preprocess_drift(x: Union[numpy.ndarray, list], model: keras.src.models.model.Model, preprocess_batch_fn: Optional[Callable] = None, tokenizer: Optional[Callable] = None, max_len: Optional[int] = None, batch_size: int = 10000000000, dtype: type[numpy.generic] = <class 'numpy.float32'>) -> Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Prediction function used for preprocessing step of drift detector.

Name
Type
Default
Description

x

Union[numpy.ndarray, list]

Batch of instances.

model

keras.src.models.model.Model

Model used for preprocessing.

preprocess_batch_fn

Optional[Callable]

None

Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the TensorFlow model.

tokenizer

Optional[Callable]

None

Optional tokenizer for text drift.

max_len

Optional[int]

None

Optional max token length for text drift.

batch_size

int

10000000000

Batch size.

dtype

type[numpy.generic]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or tf.float32.

Returns

  • Type: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Last updated

Was this helpful?