alibi_detect.cd.tensorflow.preprocess
HiddenOutput
HiddenOutputInherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable
Constructor
HiddenOutput(self, model: keras.src.models.model.Model, layer: int = -1, input_shape: tuple = None, flatten: bool = False) -> Nonemodel
keras.src.models.model.Model
layer
int
-1
input_shape
Optional[tuple]
None
flatten
bool
False
Methods
call
callcall(x: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]) -> tensorflow.python.framework.tensor.Tensorx
Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]
Returns
Type:
tensorflow.python.framework.tensor.Tensor
UAE
UAEInherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable
Constructor
UAE(self, encoder_net: Optional[keras.src.models.model.Model] = None, input_layer: Union[keras.src.layers.layer.Layer, keras.src.models.model.Model, NoneType] = None, shape: Optional[tuple] = None, enc_dim: Optional[int] = None) -> Noneencoder_net
Optional[keras.src.models.model.Model]
None
input_layer
Union[keras.src.layers.layer.Layer, keras.src.models.model.Model, None]
None
shape
Optional[tuple]
None
enc_dim
Optional[int]
None
Methods
call
callcall(x: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, Dict[str, tensorflow.python.framework.tensor.Tensor]]) -> tensorflow.python.framework.tensor.Tensorx
Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, Dict[str, tensorflow.python.framework.tensor.Tensor]]
Returns
Type:
tensorflow.python.framework.tensor.Tensor
Functions
preprocess_drift
preprocess_driftpreprocess_drift(x: Union[numpy.ndarray, list], model: keras.src.models.model.Model, preprocess_batch_fn: Optional[Callable] = None, tokenizer: Optional[Callable] = None, max_len: Optional[int] = None, batch_size: int = 10000000000, dtype: type[numpy.generic] = <class 'numpy.float32'>) -> Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]Prediction function used for preprocessing step of drift detector.
x
Union[numpy.ndarray, list]
Batch of instances.
model
keras.src.models.model.Model
Model used for preprocessing.
preprocess_batch_fn
Optional[Callable]
None
Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the TensorFlow model.
tokenizer
Optional[Callable]
None
Optional tokenizer for text drift.
max_len
Optional[int]
None
Optional max token length for text drift.
batch_size
int
10000000000
Batch size.
dtype
type[numpy.generic]
<class 'numpy.float32'>
Model output type, e.g. np.float32 or tf.float32.
Returns
Type:
Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]
Last updated
Was this helpful?

