alibi_detect.cd.tensorflow.classifier
ClassifierDriftTF
ClassifierDriftTFConstructor
ClassifierDriftTF(self, x_ref: numpy.ndarray, model: keras.src.models.model.Model, p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, preds_type: str = 'probs', binarize_preds: bool = False, reg_loss_fn: Callable = <function ClassifierDriftTF.<lambda> at 0x28fde7430>, train_size: Optional[float] = 0.75, n_folds: Optional[int] = None, retrain_from_scratch: bool = True, seed: int = 0, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), Type[ForwardRef('tf.keras.optimizers.Optimizer')], Type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, learning_rate: float = 0.001, batch_size: int = 32, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, verbose: int = 0, train_kwargs: Optional[dict] = None, dataset: Callable = <class 'alibi_detect.utils.tensorflow.data.TFDataset'>, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> NoneName
Type
Default
Description
Methods
score
scoreName
Type
Default
Description
Last updated
Was this helpful?

