alibi_detect.cd.fet

FETDrift

Inherits from: BaseUnivariateDrift, BaseDetector, ABC, DriftConfigMixin

Constructor

FETDrift(self, x_ref: Union[numpy.ndarray, list], p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, correction: str = 'bonferroni', alternative: str = 'greater', n_features: Optional[int] = None, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> None
Name
Type
Default
Description

x_ref

Union[numpy.ndarray, list]

Data used as reference distribution. Data must consist of either [True, False]'s, or [0, 1]'s.

p_val

float

0.05

p-value used for significance of the FET test. If the FDR correction method is used, this corresponds to the acceptable q-value.

x_ref_preprocessed

bool

False

Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.

preprocess_at_init

bool

True

Whether to preprocess the reference data when the detector is instantiated. Otherwise, the reference data will be preprocessed at prediction time. Only applies if x_ref_preprocessed=False.

update_x_ref

Optional[Dict[str, int]]

None

Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.

preprocess_fn

Optional[Callable]

None

Function to preprocess the data before computing the data drift metrics.

correction

str

'bonferroni'

Correction type for multivariate data. Either 'bonferroni' or 'fdr' (False Discovery Rate).

alternative

str

'greater'

Defines the alternative hypothesis. Options are 'greater', 'less' or two-sided. These correspond to an increase, decrease, or any change in the mean of the Bernoulli data.

n_features

Optional[int]

None

Number of features used in the FET test. No need to pass it if no preprocessing takes place. In case of a preprocessing step, this can also be inferred automatically but could be more expensive to compute.

input_shape

Optional[tuple]

None

Shape of input data.

data_type

Optional[str]

None

Optionally specify the data type (tabular, image or time-series). Added to metadata.

Methods

feature_score

feature_score(x_ref: numpy.ndarray, x: numpy.ndarray) -> Tuple[numpy.ndarray, numpy.ndarray]

Performs Fisher exact test(s), computing the p-value per feature.

Name
Type
Default
Description

x_ref

numpy.ndarray

Reference instances to compare distribution with. Data must consist of either [True, False]'s, or [0, 1]'s.

x

numpy.ndarray

Batch of instances. Data must consist of either [True, False]'s, or [0, 1]'s.

Returns

  • Type: Tuple[numpy.ndarray, numpy.ndarray]

Last updated

Was this helpful?