alibi_detect.cd.preprocess
Functions
classifier_uncertainty
classifier_uncertaintyclassifier_uncertainty(x: Union[numpy.ndarray, list], model_fn: Callable, preds_type: str = 'probs', uncertainty_type: str = 'entropy', margin_width: float = 0.1) -> numpy.ndarrayEvaluate model_fn on x and transform predictions to prediction uncertainties.
x
Union[numpy.ndarray, list]
Batch of instances.
model_fn
Callable
Function that evaluates a classification model on x in a single call (contains batching logic if necessary).
preds_type
str
'probs'
Type of prediction output by the model. Options are 'probs' (in [0,1]) or 'logits' (in [-inf,inf]).
uncertainty_type
str
'entropy'
Method for determining the model's uncertainty for a given instance. Options are 'entropy' or 'margin'.
margin_width
float
0.1
Width of the margin if uncertainty_type = 'margin'. The model is considered uncertain on an instance if the highest two class probabilities it assigns to the instance differ by less than margin_width.
Returns
Type:
numpy.ndarray
regressor_uncertainty
regressor_uncertaintyregressor_uncertainty(x: Union[numpy.ndarray, list], model_fn: Callable, uncertainty_type: str = 'mc_dropout', n_evals: int = 25) -> numpy.ndarrayEvaluate model_fn on x and transform predictions to prediction uncertainties.
x
Union[numpy.ndarray, list]
Batch of instances.
model_fn
Callable
Function that evaluates a regression model on x in a single call (contains batching logic if necessary).
uncertainty_type
str
'mc_dropout'
Method for determining the model's uncertainty for a given instance. Options are 'mc_dropout' or 'ensemble'. The former should output a scalar per instance. The latter should output a vector of predictions per instance.
n_evals
int
25
The number of times to evaluate the model under different dropout configurations. Only relavent when using the 'mc_dropout' uncertainty type.
Returns
Type:
numpy.ndarray
Last updated
Was this helpful?

