alibi_detect.cd.model_uncertainty
Constants
logger
loggerlogger: logging.Logger = <Logger alibi_detect.cd.model_uncertainty (WARNING)>Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.
ClassifierUncertaintyDrift
ClassifierUncertaintyDriftInherits from: DriftConfigMixin
Constructor
ClassifierUncertaintyDrift(self, x_ref: Union[numpy.ndarray, list], model: Callable, p_val: float = 0.05, x_ref_preprocessed: bool = False, backend: Optional[str] = None, update_x_ref: Optional[Dict[str, int]] = None, preds_type: str = 'probs', uncertainty_type: str = 'entropy', margin_width: float = 0.1, batch_size: int = 32, preprocess_batch_fn: Optional[Callable] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, tokenizer: Optional[Callable] = None, max_len: Optional[int] = None, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> Nonex_ref
Union[numpy.ndarray, list]
Data used as reference distribution. Should be disjoint from the data the model was trained on for accurate p-values.
model
Callable
Classification model outputting class probabilities (or logits)
p_val
float
0.05
p-value used for the significance of the test.
x_ref_preprocessed
bool
False
Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.
backend
Optional[str]
None
Backend to use if model requires batch prediction. Options are 'tensorflow' or 'pytorch'.
update_x_ref
Optional[Dict[str, int]]
None
Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.
preds_type
str
'probs'
Type of prediction output by the model. Options are 'probs' (in [0,1]) or 'logits' (in [-inf,inf]).
uncertainty_type
str
'entropy'
Method for determining the model's uncertainty for a given instance. Options are 'entropy' or 'margin'.
margin_width
float
0.1
Width of the margin if uncertainty_type = 'margin'. The model is considered uncertain on an instance if the highest two class probabilities it assigns to the instance differ by less than margin_width.
batch_size
int
32
Batch size used to evaluate model. Only relevant when backend has been specified for batch prediction.
preprocess_batch_fn
Optional[Callable]
None
Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the model.
device
Union[Literal[cuda, gpu, cpu], ForwardRef('torch.device'), None]
None
Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device. Only relevant for 'pytorch' backend.
tokenizer
Optional[Callable]
None
Optional tokenizer for NLP models.
max_len
Optional[int]
None
Optional max token length for NLP models.
input_shape
Optional[tuple]
None
Shape of input data.
data_type
Optional[str]
None
Optionally specify the data type (tabular, image or time-series). Added to metadata.
Methods
predict
predictpredict(x: Union[numpy.ndarray, list], return_p_val: bool = True, return_distance: bool = True) -> Dict[Dict[str, str], Dict[str, Union[numpy.ndarray, int, float]]]Predict whether a batch of data has drifted from the reference data.
x
Union[numpy.ndarray, list]
Batch of instances.
return_p_val
bool
True
Whether to return the p-value of the test.
return_distance
bool
True
Whether to return the corresponding test statistic (K-S for 'entropy', Chi2 for 'margin').
Returns
Type:
Dict[Dict[str, str], Dict[str, Union[numpy.ndarray, int, float]]]
RegressorUncertaintyDrift
RegressorUncertaintyDriftInherits from: DriftConfigMixin
Constructor
RegressorUncertaintyDrift(self, x_ref: Union[numpy.ndarray, list], model: Callable, p_val: float = 0.05, x_ref_preprocessed: bool = False, backend: Optional[str] = None, update_x_ref: Optional[Dict[str, int]] = None, uncertainty_type: str = 'mc_dropout', n_evals: int = 25, batch_size: int = 32, preprocess_batch_fn: Optional[Callable] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, tokenizer: Optional[Callable] = None, max_len: Optional[int] = None, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> Nonex_ref
Union[numpy.ndarray, list]
Data used as reference distribution. Should be disjoint from the data the model was trained on for accurate p-values.
model
Callable
Regression model outputting class probabilities (or logits)
p_val
float
0.05
p-value used for the significance of the test.
x_ref_preprocessed
bool
False
Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.
backend
Optional[str]
None
Backend to use if model requires batch prediction. Options are 'tensorflow' or 'pytorch'.
update_x_ref
Optional[Dict[str, int]]
None
Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.
uncertainty_type
str
'mc_dropout'
Method for determining the model's uncertainty for a given instance. Options are 'mc_dropout' or 'ensemble'. The former should output a scalar per instance. The latter should output a vector of predictions per instance.
n_evals
int
25
The number of times to evaluate the model under different dropout configurations. Only relevant when using the 'mc_dropout' uncertainty type.
batch_size
int
32
Batch size used to evaluate model. Only relevant when backend has been specified for batch prediction.
preprocess_batch_fn
Optional[Callable]
None
Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the model.
device
Union[Literal[cuda, gpu, cpu], ForwardRef('torch.device'), None]
None
Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device. Only relevant for 'pytorch' backend.
tokenizer
Optional[Callable]
None
Optional tokenizer for NLP models.
max_len
Optional[int]
None
Optional max token length for NLP models.
input_shape
Optional[tuple]
None
Shape of input data.
data_type
Optional[str]
None
Optionally specify the data type (tabular, image or time-series). Added to metadata.
Methods
predict
predictpredict(x: Union[numpy.ndarray, list], return_p_val: bool = True, return_distance: bool = True) -> Dict[Dict[str, str], Dict[str, Union[numpy.ndarray, int, float]]]Predict whether a batch of data has drifted from the reference data.
x
Union[numpy.ndarray, list]
Batch of instances.
return_p_val
bool
True
Whether to return the p-value of the test.
return_distance
bool
True
Whether to return the K-S test statistic
Returns
Type:
Dict[Dict[str, str], Dict[str, Union[numpy.ndarray, int, float]]]
Last updated
Was this helpful?

