alibi_detect.cd.cvm
CVMDrift
CVMDriftInherits from: BaseUnivariateDrift, BaseDetector, ABC, DriftConfigMixin
Constructor
CVMDrift(self, x_ref: Union[numpy.ndarray, list], p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, correction: str = 'bonferroni', n_features: Optional[int] = None, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> Nonex_ref
Union[numpy.ndarray, list]
Data used as reference distribution.
p_val
float
0.05
p-value used for significance of the CVM test. If the FDR correction method is used, this corresponds to the acceptable q-value.
x_ref_preprocessed
bool
False
Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.
preprocess_at_init
bool
True
Whether to preprocess the reference data when the detector is instantiated. Otherwise, the reference data will be preprocessed at prediction time. Only applies if x_ref_preprocessed=False.
update_x_ref
Optional[Dict[str, int]]
None
Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.
preprocess_fn
Optional[Callable]
None
Function to preprocess the data before computing the data drift metrics.
correction
str
'bonferroni'
Correction type for multivariate data. Either 'bonferroni' or 'fdr' (False Discovery Rate).
n_features
Optional[int]
None
Number of features used in the CVM test. No need to pass it if no preprocessing takes place. In case of a preprocessing step, this can also be inferred automatically but could be more expensive to compute.
input_shape
Optional[tuple]
None
Shape of input data.
data_type
Optional[str]
None
Optionally specify the data type (tabular, image or time-series). Added to metadata.
Methods
feature_score
feature_scorefeature_score(x_ref: numpy.ndarray, x: numpy.ndarray) -> Tuple[numpy.ndarray, numpy.ndarray]Performs the two-sample Cramer-von Mises test(s), computing the p-value and test statistic per feature.
x_ref
numpy.ndarray
Reference instances to compare distribution with.
x
numpy.ndarray
Batch of instances.
Returns
Type:
Tuple[numpy.ndarray, numpy.ndarray]
Last updated
Was this helpful?

