alibi_detect.cd.spot_the_diff
Constants
has_pytorch
has_pytorchhas_pytorch: bool = Truehas_tensorflow
has_tensorflowhas_tensorflow: bool = TrueSpotTheDiffDrift
SpotTheDiffDriftConstructor
SpotTheDiffDrift(self, x_ref: Union[numpy.ndarray, list], backend: str = 'tensorflow', p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_fn: Optional[Callable] = None, kernel: Callable = None, n_diffs: int = 1, initial_diffs: Optional[numpy.ndarray] = None, l1_reg: float = 0.01, binarize_preds: bool = False, train_size: Optional[float] = 0.75, n_folds: Optional[int] = None, retrain_from_scratch: bool = True, seed: int = 0, optimizer: Optional[Callable] = None, learning_rate: float = 0.001, batch_size: int = 32, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, verbose: int = 0, train_kwargs: Optional[dict] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, dataset: Optional[Callable] = None, dataloader: Optional[Callable] = None, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> NoneName
Type
Default
Description
Methods
predict
predictName
Type
Default
Description
Last updated
Was this helpful?

