alibi_detect.cd.classifier
Constants
has_pytorch
has_pytorchhas_pytorch: bool = Truebool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
has_tensorflow
has_tensorflowhas_tensorflow: bool = Truebool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
ClassifierDrift
ClassifierDriftInherits from: DriftConfigMixin
Constructor
ClassifierDrift(self, x_ref: Union[numpy.ndarray, list], model: Union[sklearn.base.ClassifierMixin, Callable], backend: str = 'tensorflow', p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, preds_type: str = 'probs', binarize_preds: bool = False, reg_loss_fn: Callable = <function ClassifierDrift.<lambda> at 0x28fe6e9d0>, train_size: Optional[float] = 0.75, n_folds: Optional[int] = None, retrain_from_scratch: bool = True, seed: int = 0, optimizer: Optional[Callable] = None, learning_rate: float = 0.001, batch_size: int = 32, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, verbose: int = 0, train_kwargs: Optional[dict] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, dataset: Optional[Callable] = None, dataloader: Optional[Callable] = None, input_shape: Optional[tuple] = None, use_calibration: bool = False, calibration_kwargs: Optional[dict] = None, use_oob: bool = False, data_type: Optional[str] = None) -> Nonex_ref
Union[numpy.ndarray, list]
Data used as reference distribution.
model
Union[sklearn.base.ClassifierMixin, Callable]
PyTorch, TensorFlow or Sklearn classification model used for drift detection.
backend
str
'tensorflow'
Backend used for the training loop implementation. Supported: 'tensorflow'
p_val
float
0.05
p-value used for the significance of the test.
x_ref_preprocessed
bool
False
Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.
preprocess_at_init
bool
True
Whether to preprocess the reference data when the detector is instantiated. Otherwise, the reference data will be preprocessed at prediction time. Only applies if x_ref_preprocessed=False.
update_x_ref
Optional[Dict[str, int]]
None
Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.
preprocess_fn
Optional[Callable]
None
Function to preprocess the data before computing the data drift metrics.
preds_type
str
'probs'
Whether the model outputs 'probs' (probabilities - for 'tensorflow', 'pytorch', 'sklearn' models), 'logits' (for 'pytorch', 'tensorflow' models), 'scores' (for 'sklearn' models if decision_function is supported).
binarize_preds
bool
False
Whether to test for discrepancy on soft (e.g. probs/logits/scores) model predictions directly with a K-S test or binarise to 0-1 prediction errors and apply a binomial test.
reg_loss_fn
Callable
<function ClassifierDrift.<lambda> at 0x28fe6e9d0>
The regularisation term reg_loss_fn(model) is added to the loss function being optimized. Only relevant for 'tensorflow` and 'pytorch' backends.
train_size
Optional[float]
0.75
Optional fraction (float between 0 and 1) of the dataset used to train the classifier. The drift is detected on 1 - train_size. Cannot be used in combination with n_folds.
n_folds
Optional[int]
None
Optional number of stratified folds used for training. The model preds are then calculated on all the out-of-fold instances. This allows to leverage all the reference and test data for drift detection at the expense of longer computation. If both train_size and n_folds are specified, n_folds is prioritized.
retrain_from_scratch
bool
True
Whether the classifier should be retrained from scratch for each set of test data or whether it should instead continue training from where it left off on the previous set.
seed
int
0
Optional random seed for fold selection.
optimizer
Optional[Callable]
None
Optimizer used during training of the classifier. Only relevant for 'tensorflow' and 'pytorch' backends.
learning_rate
float
0.001
Learning rate used by optimizer. Only relevant for 'tensorflow' and 'pytorch' backends.
batch_size
int
32
Batch size used during training of the classifier. Only relevant for 'tensorflow' and 'pytorch' backends.
preprocess_batch_fn
Optional[Callable]
None
Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the model. Only relevant for 'tensorflow' and 'pytorch' backends.
epochs
int
3
Number of training epochs for the classifier for each (optional) fold. Only relevant for 'tensorflow' and 'pytorch' backends.
verbose
int
0
Verbosity level during the training of the classifier. 0 is silent, 1 a progress bar. Only relevant for 'tensorflow' and 'pytorch' backends.
train_kwargs
Optional[dict]
None
Optional additional kwargs when fitting the classifier. Only relevant for 'tensorflow' and 'pytorch' backends.
device
Union[Literal[cuda, gpu, cpu], ForwardRef('torch.device'), None]
None
Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device. Only relevant for 'pytorch' backend.
dataset
Optional[Callable]
None
Dataset object used during training. Only relevant for 'tensorflow' and 'pytorch' backends.
dataloader
Optional[Callable]
None
Dataloader object used during training. Only relevant for 'pytorch' backend.
input_shape
Optional[tuple]
None
Shape of input data.
use_calibration
bool
False
Whether to use calibration. Calibration can be used on top of any model. Only relevant for 'sklearn' backend.
calibration_kwargs
Optional[dict]
None
Optional additional kwargs for calibration. Only relevant for 'sklearn' backend. See https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html for more details.
use_oob
bool
False
Whether to use out-of-bag(OOB) predictions. Supported only for RandomForestClassifier.
data_type
Optional[str]
None
Optionally specify the data type (tabular, image or time-series). Added to metadata.
Methods
predict
predictpredict(x: Union[numpy.ndarray, list], return_p_val: bool = True, return_distance: bool = True, return_probs: bool = True, return_model: bool = True) -> Dict[str, Dict[str, Union[str, int, float, Callable]]]Predict whether a batch of data has drifted from the reference data.
x
Union[numpy.ndarray, list]
Batch of instances.
return_p_val
bool
True
Whether to return the p-value of the test.
return_distance
bool
True
Whether to return a notion of strength of the drift. K-S test stat if binarize_preds=False, otherwise relative error reduction.
return_probs
bool
True
Whether to return the instance level classifier probabilities for the reference and test data (0=reference data, 1=test data).
return_model
bool
True
Whether to return the updated model trained to discriminate reference and test instances.
Returns
Type:
Dict[str, Dict[str, Union[str, int, float, Callable]]]
Last updated
Was this helpful?

