alibi_detect.cd.pytorch.preprocess

HiddenOutput

Inherits from: Module

Constructor

HiddenOutput(self, model: Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], layer: int = -1, flatten: bool = False) -> None
Name
Type
Default
Description

model

Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential]

layer

int

-1

flatten

bool

False

Methods

forward

forward(x: torch.Tensor) -> torch.Tensor
Name
Type
Default
Description

x

torch.Tensor

Returns

  • Type: torch.Tensor

UAE

Inherits from: Module

Constructor

UAE(self, encoder_net: Optional[torch.nn.modules.module.Module] = None, input_layer: Optional[torch.nn.modules.module.Module] = None, shape: Optional[tuple] = None, enc_dim: Optional[int] = None) -> None
Name
Type
Default
Description

encoder_net

Optional[torch.nn.modules.module.Module]

None

input_layer

Optional[torch.nn.modules.module.Module]

None

shape

Optional[tuple]

None

enc_dim

Optional[int]

None

Methods

forward

forward(x: Union[numpy.ndarray, torch.Tensor, Dict[str, torch.Tensor]]) -> torch.Tensor
Name
Type
Default
Description

x

Union[numpy.ndarray, torch.Tensor, Dict[str, torch.Tensor]]

Returns

  • Type: torch.Tensor

Functions

preprocess_drift

preprocess_drift(x: Union[numpy.ndarray, list], model: Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], device: Union[Literal[cuda, gpu, cpu], torch.device, None] = None, preprocess_batch_fn: Optional[Callable] = None, tokenizer: Optional[Callable] = None, max_len: Optional[int] = None, batch_size: int = 10000000000, dtype: Union[type[numpy.generic], torch.dtype] = <class 'numpy.float32'>) -> Union[numpy.ndarray, torch.Tensor, tuple]

Prediction function used for preprocessing step of drift detector.

Name
Type
Default
Description

x

Union[numpy.ndarray, list]

Batch of instances.

model

Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential]

Model used for preprocessing.

device

Union[Literal[cuda, gpu, cpu], torch.device, None]

None

Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device.

preprocess_batch_fn

Optional[Callable]

None

Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the PyTorch model.

tokenizer

Optional[Callable]

None

Optional tokenizer for text drift.

max_len

Optional[int]

None

Optional max token length for text drift.

batch_size

int

10000000000

Batch size used during prediction.

dtype

Union[type[numpy.generic], torch.dtype]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or torch.float32.

Returns

  • Type: Union[numpy.ndarray, torch.Tensor, tuple]

Last updated

Was this helpful?