alibi_detect.cd.pytorch.learned_kernel
LearnedKernelDriftTorch
LearnedKernelDriftTorchConstructor
LearnedKernelDriftTorch(self, x_ref: Union[numpy.ndarray, list], kernel: Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, n_permutations: int = 100, var_reg: float = 1e-05, reg_loss_fn: Callable = <function LearnedKernelDriftTorch.<lambda> at 0x28fde7b80>, train_size: Optional[float] = 0.75, retrain_from_scratch: bool = True, optimizer: torch.optim.optimizer.Optimizer = <class 'torch.optim.adam.Adam'>, learning_rate: float = 0.001, batch_size: int = 32, batch_size_predict: int = 32, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, num_workers: int = 0, verbose: int = 0, train_kwargs: Optional[dict] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, dataset: Callable = <class 'alibi_detect.utils.pytorch.data.TorchDataset'>, dataloader: Callable = <class 'torch.utils.data.dataloader.DataLoader'>, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> NoneName
Type
Default
Description
Methods
score
scoreName
Type
Default
Description
trainer
trainerName
Type
Default
Description
Last updated
Was this helpful?

