alibi_detect.cd.keops.learned_kernel

LearnedKernelDriftKeops

Inherits from: BaseLearnedKernelDrift, BaseDetector, ABC

Constructor

LearnedKernelDriftKeops(self, x_ref: Union[numpy.ndarray, list], kernel: Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], p_val: float = 0.05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, n_permutations: int = 100, batch_size_permutations: int = 1000000, var_reg: float = 1e-05, reg_loss_fn: Callable = <function LearnedKernelDriftKeops.<lambda> at 0x28fe7e5e0>, train_size: Optional[float] = 0.75, retrain_from_scratch: bool = True, optimizer: torch.optim.optimizer.Optimizer = <class 'torch.optim.adam.Adam'>, learning_rate: float = 0.001, batch_size: int = 32, batch_size_predict: int = 1000000, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, num_workers: int = 0, verbose: int = 0, train_kwargs: Optional[dict] = None, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None, dataset: Callable = <class 'alibi_detect.utils.pytorch.data.TorchDataset'>, dataloader: Callable = <class 'torch.utils.data.dataloader.DataLoader'>, input_shape: Optional[tuple] = None, data_type: Optional[str] = None) -> None
Name
Type
Default
Description

x_ref

Union[numpy.ndarray, list]

Data used as reference distribution.

kernel

Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential]

Trainable PyTorch module that returns a similarity between two instances.

p_val

float

0.05

p-value used for the significance of the test.

x_ref_preprocessed

bool

False

Whether the given reference data x_ref has been preprocessed yet. If x_ref_preprocessed=True, only the test data x will be preprocessed at prediction time. If x_ref_preprocessed=False, the reference data will also be preprocessed.

preprocess_at_init

bool

True

Whether to preprocess the reference data when the detector is instantiated. Otherwise, the reference data will be preprocessed at prediction time. Only applies if x_ref_preprocessed=False.

update_x_ref

Optional[Dict[str, int]]

None

Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed.

preprocess_fn

Optional[Callable]

None

Function to preprocess the data before applying the kernel.

n_permutations

int

100

The number of permutations to use in the permutation test once the MMD has been computed.

batch_size_permutations

int

1000000

KeOps computes the n_permutations of the MMD^2 statistics in chunks of batch_size_permutations.

var_reg

float

1e-05

Constant added to the estimated variance of the MMD for stability.

reg_loss_fn

Callable

<function LearnedKernelDriftKeops.<lambda> at 0x28fe7e5e0>

The regularisation term reg_loss_fn(kernel) is added to the loss function being optimized.

train_size

Optional[float]

0.75

Optional fraction (float between 0 and 1) of the dataset used to train the kernel. The drift is detected on 1 - train_size.

retrain_from_scratch

bool

True

Whether the kernel should be retrained from scratch for each set of test data or whether it should instead continue training from where it left off on the previous set.

optimizer

torch.optim.optimizer.Optimizer

<class 'torch.optim.adam.Adam'>

Optimizer used during training of the kernel.

learning_rate

float

0.001

Learning rate used by optimizer.

batch_size

int

32

Batch size used during training of the kernel.

batch_size_predict

int

1000000

Batch size used for the trained drift detector predictions.

preprocess_batch_fn

Optional[Callable]

None

Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the kernel.

epochs

int

3

Number of training epochs for the kernel. Corresponds to the smaller of the reference and test sets.

num_workers

int

0

Number of workers for the dataloader. The default (num_workers=0) means multi-process data loading is disabled. Setting num_workers>0 may be unreliable on Windows.

verbose

int

0

Verbosity level during the training of the kernel. 0 is silent, 1 a progress bar.

train_kwargs

Optional[dict]

None

Optional additional kwargs when training the kernel.

device

Union[Literal[cuda, gpu, cpu], torch.device, None]

None

Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device. Relevant for 'pytorch' and 'keops' backends.

dataset

Callable

<class 'alibi_detect.utils.pytorch.data.TorchDataset'>

Dataset object used during training.

dataloader

Callable

<class 'torch.utils.data.dataloader.DataLoader'>

Dataloader object used during training. Only relevant for 'pytorch' backend.

input_shape

Optional[tuple]

None

Shape of input data.

data_type

Optional[str]

None

Optionally specify the data type (tabular, image or time-series). Added to metadata.

Methods

score

score(x: Union[numpy.ndarray, list]) -> Tuple[float, float, float]

Compute the p-value resulting from a permutation test using the maximum mean discrepancy

as a distance measure between the reference data and the data to be tested. The kernel used within the MMD is first trained to maximise an estimate of the resulting test power.

Name
Type
Default
Description

x

Union[numpy.ndarray, list]

Batch of instances.

Returns

  • Type: Tuple[float, float, float]

trainer

trainer(j_hat: alibi_detect.cd.keops.learned_kernel.LearnedKernelDriftKeops.JHat, dataloaders: Tuple[torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader], device: torch.device, optimizer: Callable = <class 'torch.optim.adam.Adam'>, learning_rate: float = 0.001, preprocess_fn: Optional[Callable] = None, epochs: int = 20, reg_loss_fn: Callable = <function LearnedKernelDriftKeops.<lambda> at 0x28fe7e940>, verbose: int = 1) -> None

Train the kernel to maximise an estimate of test power using minibatch gradient descent.

Name
Type
Default
Description

j_hat

alibi_detect.cd.keops.learned_kernel.LearnedKernelDriftKeops.JHat

dataloaders

Tuple[torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader]

device

torch.device

optimizer

Callable

<class 'torch.optim.adam.Adam'>

learning_rate

float

0.001

preprocess_fn

Optional[Callable]

None

epochs

int

20

reg_loss_fn

Callable

<function LearnedKernelDriftKeops.<lambda> at 0x28fe7e940>

verbose

int

1

Returns

  • Type: None

Last updated

Was this helpful?