Triton GPT2 Example Azure
In this notebook, we will run an example of text generation using a GPT-2 model exported from HuggingFace and deployed with Seldon's Triton pre-packed server. The example also covers converting the model to ONNX format. The implemented example below uses a Greedy approach for next token prediction.
For more info, see the HuggingFace GPT-2 documentation.
After we have the module deployed to Kubernetes, we will run a simple load test to evaluate the module's inference performance.
Steps
Create PersistentVolume and PVC mounting Azure Storage Blob
Setup Seldon-Core in your Kubernetes cluster
Deploy the ONNX model with Seldon’s pre-packaged Triton server
Run model inference (greedy algorithm example)
Basic Requirements
Helm v3.0.0+
A Kubernetes cluster running v1.13 or above
kubectl v1.14+
Python 3.6+
First, create a requirements.txt
file:
transformers==4.5.1
torch==1.8.1
tokenizers<0.11,>=0.10.1
tensorflow==2.4.1
tf2onnx
Now, install the dependencies:
pip install --trusted-host=pypi.python.org --trusted-host=pypi.org --trusted-host=files.pythonhosted.org -r requirements.txt
Export HuggingFace TFGPT2LMHeadModel pre-trained model and save it locally
from transformers import GPT2Tokenizer, TFGPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("gpt2")model = TFGPT2LMHeadModel.from_pretrained( "gpt2", from_pt=True, pad_token_id=tokenizer.eos_token_id)model.save_pretrained("./tfgpt2model", saved_model=True)
Convert the TensorFlow saved model to ONNX
python -m tf2onnx.convert --saved-model ./tfgpt2model/saved_model/1 --opset 13 --output model.onnxAzure Setup
We have provided an Azure Setup Notebook that deploys an AKS cluster, an Azure storage account, and installs the Azure Blob CSI driver. If an AKS cluster already exists, skip to the creation of Blob Storage and CSI driver installation steps.
Upon completion of the Azure setup, the following infrastructure will be created:
resource_group = "seldon" # feel free to replace or use this default
aks_name = "modeltests"
storage_account_name = "modeltestsgpt" # fill in
storage_container_name = "gpt2onnx"
Copy your model to Azure Blob
# Copy model file
az extension add --name storage-preview
az storage azcopy blob upload --container {storage_container_name} \
--account-name {storage_account_name} \
--source ./model.onnx \
--destination gpt2/1/model.onnx
#Verify Uploaded file
az storage blob list \
--account-name {storage_account_name}\
--container-name {storage_container_name} \
--output table
Name IsDirectory Blob Type Blob Tier Length Content Type Last Modified Snapshot
----------------- ------------- ----------- ----------- --------- ------------------------ ------------------------- ----------
gpt2/1/model.onnx BlockBlob Hot 652535462 application/octet-stream 2021-05-28T04:37:11+00:00
Add Azure PersistentVolume and Claim
For more details on creating a PersistentVolume using the CSI driver, refer to the official documentation.
Create secret
Create a PersistentVolume pointing to the secret and Blob Container Name
Create a PersistentVolumeClaim to bind to the volume
key = !az storage account keys list --account-name {storage_account_name} -g {resource_group} --query '[0].value' -o tsv
storage_account_key = key[0]
# Create secret to access storage account
kubectl create secret generic azure-blobsecret --from-literal azurestorageaccountname={storage_account_name} --from-literal azurestorageaccountkey="{storage_account_key}" --type=Opaque
Create a file named azure-blobfuse-pv.yaml
:
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv-gpt2blob
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
csi:
driver: blob.csi.azure.com
readOnly: false
volumeHandle: trainingdata
volumeAttributes:
containerName: gpt2onnx
nodeStageSecretRef:
name: azure-blobsecret
namespace: default
mountOptions:
- -o uid=8888
- -o allow_other
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-gpt2blob
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
volumeName: pv-gpt2blob
storageClassName: ""
kubectl apply -f azure-blobfuse-pv.yaml
# Verify PVC is bound
kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/pv-gpt2blob 10Gi RWX Retain Bound default/pvc-gpt2blob 4h54m
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/pvc-gpt2blob Bound pv-gpt2blob 10Gi RWX 4h54m
Run Seldon in your kubernetes cluster
Follow the Seldon-Core Setup notebook to set up a cluster with Istio Ingress and install Seldon Core.
Deploy your model with Seldon pre-packaged Triton server
Create a file named gpt2-deploy.yaml
:
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
name: gpt2gpu
spec:
annotations:
prometheus.io/port: "8002"
prometheus.io/path: "/metrics"
predictors:
- componentSpecs:
- spec:
containers:
- name: gpt2
resources:
requests:
memory: 2Gi
cpu: 2
nvidia.com/gpu: 1
limits:
memory: 4Gi
cpu: 4
nvidia.com/gpu: 1
tolerations:
- key: "nvidia.com"
operator: "Equal"
value: "gpu"
effect: "NoSchedule"
graph:
implementation: TRITON_SERVER
logger:
mode: all
modelUri: pvc://pvc-gpt2blob/
name: gpt2
type: MODEL
name: default
replicas: 1
protocol: kfserving
kubectl apply -f gpt2-deploy.yaml -n default
kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=gpt2gpu -o jsonpath='{.items[0].metadata.name}')
Interact with the model: get model metadata
ingress_ip=$(kubectl get svc --namespace istio-system istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
curl -v http://${ingress_ip}:80/seldon/default/gpt2gpu/v2/models/gpt2
{"name":"gpt2","versions":["1"],"platform":"onnxruntime_onnx","inputs":[{"name":"input_ids:0","datatype":"INT32","shape":[-1,-1]},{"name":"attention_mask:0","datatype":"INT32","shape":[-1,-1]}],"outputs":[{"name":"past_key_values","datatype":"FP32","shape":[12,2,-1,12,-1,64]},{"name":"logits","datatype":"FP32","shape":[-1,-1,50257]}]}
Run prediction test: generate a sentence completion using GPT2 model - Greedy approach
import http
import json
import numpy as np
import requests
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_text = "I love Artificial Intelligence"
count = 0
max_gen_len = 8
gen_sentence = input_text
while count < max_gen_len:
input_ids = tokenizer.encode(gen_sentence, return_tensors="tf")
shape = input_ids.shape.as_list()
payload = {
"inputs": [
{
"name": "input_ids:0",
"datatype": "INT32",
"shape": shape,
"data": input_ids.numpy().tolist(),
},
{
"name": "attention_mask:0",
"datatype": "INT32",
"shape": shape,
"data": np.ones(shape, dtype=np.int32).tolist(),
},
]
}
tfserving_url = (
"http://" + str(ingress_ip) + "/seldon/default/gpt2gpu/v2/models/gpt2/infer"
)
print(f"sending request to {tfserving_url}")
with requests.post(tfserving_url, json=payload) as ret:
try:
res = ret.json()
except:
continue
# extract logits
logits = np.array(res["outputs"][1]["data"])
logits = logits.reshape(res["outputs"][1]["shape"])
# take the best next token probability of the last token of input ( greedy approach)
next_token = logits.argmax(axis=2)[0]
next_token_str = tokenizer.decode(
next_token[-1:], skip_special_tokens=True, clean_up_tokenization_spaces=True
).strip()
gen_sentence += " " + next_token_str
print(f"Sentence: {gen_sentence}")
count += 1
print(f"Input: {input_text}\nOutput: {gen_sentence}")
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence .
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love the
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love the way
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love the way it
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love the way it 's
sending request to http://20.75.117.145/seldon/default/gpt2gpu/v2/models/gpt2/infer
Sentence: I love Artificial Intelligence . I love the way it 's designed
Input: I love Artificial Intelligence
Output: I love Artificial Intelligence . I love the way it 's designed
Configure Model Monitoring with Azure Monitor
The Azure Monitor Containers Insights provides functionality to allow collecting data from any Prometheus endpoints. To turn on Azure Monitor Container Insights, follow the steps described here.
kubectl get pods -n kube-system | grep omsagent
Configure Prometheus Metrics scraping
For more details on how to configure the scraping endpoints and query collected data refer to MS Docs on Configure scraping of Prometheus metrics with Container insights.
Our deployed model metrics are available from the Seldon model orchestrator and Nvidia Triton Server. To enable scraping for both endpoints, update the ConfigMap
that configures omsagent
(azure-metrics-cm.yaml).
kubectl apply -f azure-metrics-cm.yaml
Query and Visualize collected data
Collected metrics are available in the Logs blade of Azure Monitor in a table InsightsMetrics.
To get Model Inference Requests per minute from Seldon Metrics, run the following KQL query:
InsightsMetrics
| where Namespace == "prometheus"
| where Name == "seldon_api_executor_server_requests_seconds_count"
| extend Model = parse_json(Tags).deployment_name
| where parse_json(Tags).service == "predictions"
| order by TimeGenerated asc
| extend RequestsPerMin = Val - prev(Val,1)
| project TimeGenerated, RequestsPerMin
| render areachart
To get Inference Duration from Triton Metrics:
InsightsMetrics
| where Namespace == "prometheus"
| where Name in ("nv_inference_request_duration_us")
| order by TimeGenerated asc
| extend QueueDurationSec = (Val - prev(Val, 1)) / 1000
| project TimeGenerated, Name, QueueDurationSec
| render areachart
Here is an example dashboard created using the queries above:

Run Load Test / Performance Test using vegeta
Install vegeta
For more details, see the official vegeta documentation.
wget https://github.com/tsenart/vegeta/releases/download/v12.8.3/vegeta-12.8.3-linux-arm64.tar.gz
tar -zxvf vegeta-12.8.3-linux-arm64.tar.gz
chmod +x vegeta
Generate vegeta target file
import base64
import json
from subprocess import PIPE, Popen, run
import numpy as np
from transformers import GPT2Tokenizer, TFGPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_text = "I enjoy working in Seldon"
input_ids = tokenizer.encode(input_text, return_tensors="tf")
shape = input_ids.shape.as_list()
payload = {
"inputs": [
{
"name": "input_ids:0",
"datatype": "INT32",
"shape": shape,
"data": input_ids.numpy().tolist(),
},
{
"name": "attention_mask:0",
"datatype": "INT32",
"shape": shape,
"data": np.ones(shape, dtype=np.int32).tolist(),
},
]
}
tfserving_url = (
"http://" + str(ingress_ip) + "/seldon/default/gpt2gpu/v2/models/gpt2/infer"
)
print(f"preparing request to {tfserving_url}")
cmd = {
"method": "POST",
"header": {"Content-Type": ["application/json"]},
"url": tfserving_url,
"body": base64.b64encode(bytes(json.dumps(payload), "utf-8")).decode("utf-8"),
}
with open("vegeta_target.json", mode="w") as file:
json.dump(cmd, file)
file.write("\n\n")
./vegeta attack -targets=vegeta_target.json -rate=1 -duration=60s -format=json | ./vegeta report -type=text
Requests [total, rate, throughput] 60, 1.02, 0.95
Duration [total, attack, wait] 1m3s, 58.994s, 4.445s
Latencies [min, mean, 50, 90, 95, 99, max] 1.45s, 4.003s, 3.983s, 5.249s, 6.329s, 7.876s, 7.97s
Bytes In [total, mean] 475803960, 7930066.00
Bytes Out [total, mean] 13140, 219.00
Success [ratio] 100.00%
Status Codes [code:count] 200:60
Error Set:
Clean-up
kubectl delete -f gpt2-deploy.yaml -n default
Last updated
Was this helpful?