XGBoost Server
If you have a trained XGBoost model saved you can deploy it simply using Seldon's prepackaged XGBoost server.
Prerequisites
Seldon expects that your model has been saved as model.bst
, using XGBoost's bst.save_model()
method. Note that this is the recommended approach to serialise models.
To maximise compatibility between the serialised model and the serving runtime, it's recommended to use the same toolkit versions at both training and inference time. The expected dependency versions in the latest XGBoost pre-packaged server are as follows:
xgboost
1.4.2
Usage
To use the pre-packaged XGBoost server, it's enough to declare XGBOOST_SERVER
as the implementation
for your model. For example, for a saved Iris model, you could consider the following config:
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
name: xgboost
spec:
name: iris
predictors:
- graph:
children: []
implementation: XGBOOST_SERVER
modelUri: gs://seldon-models/xgboost/iris
name: classifier
name: default
replicas: 1
You can try out a worked notebook with a similar example.
Open Inference Protocol (or V2 protocol)
The XGBoost server can also be used to expose an API compatible with the Open Inference Protocol. Note that, under the hood, it will use the Seldon MLServer runtime.
In order to enable support for the Open Inference Protocol, it's enough to specify the protocol
of the SeldonDeployment
to use v2
. For example,
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
name: xgboost
spec:
name: iris
protocol: v2 # Activate the Open Inference Protocol
predictors:
- graph:
children: []
implementation: XGBOOST_SERVER
modelUri: gs://seldon-models/xgboost/iris
name: classifier
name: default
replicas: 1
You can try a similar example in this worked notebook.
Last updated
Was this helpful?