Triton Examples
Prerequisites
For the test data you will need to install
torch,torchvisionandtensorflowFor the visualization
matplotlibFor calling the service
curl
Setup Seldon Core
Follow the instructions to Setup Cluster with Ambassador Ingress and Install Seldon Core.
Then port-forward to that ingress on localhost:8003 in a separate terminal either with:
Ambassador:
kubectl port-forward $(kubectl get pods -n seldon -l app.kubernetes.io/name=ambassador -o jsonpath='{.items[0].metadata.name}') -n seldon 8003:8080Istio:
kubectl port-forward $(kubectl get pods -l istio=ingressgateway -n istio-system -o jsonpath='{.items[0].metadata.name}') -n istio-system 8003:8080
Create Namespace for experimentation
We will first set up the namespace of Seldon where we will be deploying all our models
!kubectl create namespace seldonnamespace/seldon createdAnd then we will set the current workspace to use the seldon namespace so all our commands are run there by default (instead of running everything in the default namespace.)
!kubectl config set-context $(kubectl config current-context) --namespace=seldonTriton Model Naming
You need to name the model in the graph with the same name as the triton model loaded as this name will be used in the path to triton.
Tensorflow CIFAR10 Model

ONNX CIFAR10 Model
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 63913 100 344 100 63569 20081 3623k --:--:-- --:--:-- --:--:-- 3651k
TorchScript CIFAR10 Model
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 63672 100 309 100 63363 2175 435k --:--:-- --:--:-- --:--:-- 435k 100 63672 100 309 100 63363 2174 435k --:--:-- --:--:-- --:--:-- 432k

Multi-Model Serving
Last updated
Was this helpful?