Service Orchestrator Overhead

Using a pretrained model for Tensorflow flowers dataset

  • Tests the extra latency added by the svcOrch for a medium size image (224x224) classification model.

Setup

  • Create a 3 node cluster

  • Install Seldon Core

!kubectl create namespace seldon
!kubectl config set-context $(kubectl config current-context) --namespace=seldon
import sys

sys.path.append("../")
from vegeta_utils import *

Put Taints Nodes

raw = !kubectl get nodes -o jsonpath='{.items[0].metadata.name}'
firstNode = raw[0]
raw = !kubectl get nodes -o jsonpath='{.items[1].metadata.name}'
secondNode = raw[0]
raw = !kubectl get nodes -o jsonpath='{.items[2].metadata.name}'
thirdNode = raw[0]
!kubectl taint nodes '{firstNode}' loadtester=active:NoSchedule
!kubectl taint nodes '{secondNode}' model=active:NoSchedule
!kubectl taint nodes '{thirdNode}' model=active:NoSchedule

Tensorflow Flowers Model - Latency Test

Tensorflow Flowers Model - No executor - Latency Test

GRPC Tensorflow Flowers Model - Latency Test

First create the binary proto for the flowers payload

GRPC Tensorflow Flowers Model - No executor - Latency Test

Last updated

Was this helpful?