Real Time Monitoring of Statistical Metrics
In this example we will add statistical performance metrics capabilities by levering the Seldon metrics server.
Dependencies
Seldon Core installed
Ingress provider (Istio or Ambassador)
An easy way is to run examples/centralized-logging/full-kind-setup.sh and then:
helm delete seldon-core-loadtesting
helm delete seldon-single-modelThen port-forward to that ingress on localhost:8003 in a separate terminal either with:
Ambassador:
kubectl port-forward $(kubectl get pods -n seldon -l app.kubernetes.io/name=ambassador -o jsonpath='{.items[0].metadata.name}') -n seldon 8003:8080Istio:
kubectl port-forward -n istio-system svc/istio-ingressgateway 8003:80!kubectl create namespace seldon || echo "namespace already created"Error from server (AlreadyExists): namespaces "seldon" already exists
namespace already created!kubectl config set-context $(kubectl config current-context) --namespace=seldonContext "kind-ansible" modified.!mkdir -p configCreate a simple model
We create a multiclass classification model - iris classifier.
The iris classifier takes an input array, and returns the prediction of the 4 classes.
The prediction can be done as numeric or as a probability array.
Send test request
Metrics Server
You can create a kubernetes deployment of the metrics server with this:
Send feedback
Check that metrics are recorded
Cleanup
Last updated
Was this helpful?