Custom Protobuf Data Example
Dependencies
Train locally
import os
import numpy as np
from sklearn import datasets
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
def main():
clf = LogisticRegression()
p = Pipeline([("clf", clf)])
print("Training model...")
p.fit(X, y)
print("Model trained!")
filename_p = "IrisClassifier.sav"
print("Saving model in %s" % filename_p)
joblib.dump(p, filename_p)
print("Model saved!")
if __name__ == "__main__":
print("Loading iris data set...")
iris = datasets.load_iris()
X, y = iris.data, iris.target
print("Dataset loaded!")
main()Custom Protobuf Specification
Custom Protobuf Compilation
gRPC test
Setup Seldon Core
Deploy your Seldon Model
Run the model in our cluster
Check that the model has been deployed
Test by sending prediction calls
Cleanup our deployment
Last updated
Was this helpful?