alibi_detect.od.pytorch.mahalanobis

MahalanobisTorch

Inherits from: TorchOutlierDetector, Module, FitMixinTorch, ABC

Constructor

MahalanobisTorch(self, min_eigenvalue: float = 1e-06, device: Union[typing_extensions.Literal['cuda', 'gpu', 'cpu'], ForwardRef('torch.device'), NoneType] = None)
Name
Type
Default
Description

min_eigenvalue

float

1e-06

Eigenvectors with eigenvalues below this value will be discarded.

device

Union[Literal[cuda, gpu, cpu], torch.device, None]

None

Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device.

Methods

fit

fit(x_ref: torch.Tensor)

Fits the detector

Name
Type
Default
Description

x_ref

torch.Tensor

The Dataset tensor.

forward

forward(x: torch.Tensor) -> torch.Tensor

Detect if x is an outlier.

Name
Type
Default
Description

x

torch.Tensor

torch.Tensor with leading batch dimension.

Returns

  • Type: torch.Tensor

score

score(x: torch.Tensor) -> torch.Tensor

Computes the score of x

Name
Type
Default
Description

x

torch.Tensor

The tensor of instances. First dimension corresponds to batch.

Returns

  • Type: torch.Tensor

Last updated

Was this helpful?