alibi_detect.od.aegmm
Constants
logger
loggerlogger: logging.Logger = <Logger alibi_detect.od.aegmm (WARNING)>Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.
OutlierAEGMM
OutlierAEGMMInherits from: BaseDetector, FitMixin, ThresholdMixin, ABC
Constructor
OutlierAEGMM(self, threshold: float = None, aegmm: keras.src.models.model.Model = None, encoder_net: keras.src.models.model.Model = None, decoder_net: keras.src.models.model.Model = None, gmm_density_net: keras.src.models.model.Model = None, n_gmm: int = None, recon_features: Callable = <function eucl_cosim_features at 0x280c66430>, data_type: str = None) -> Nonethreshold
Optional[float]
None
Threshold used for outlier score to determine outliers.
aegmm
Optional[keras.src.models.model.Model]
None
A trained tf.keras model if available.
encoder_net
Optional[keras.src.models.model.Model]
None
Layers for the encoder wrapped in a tf.keras.Sequential class if no 'aegmm' is specified.
decoder_net
Optional[keras.src.models.model.Model]
None
Layers for the decoder wrapped in a tf.keras.Sequential class if no 'aegmm' is specified.
gmm_density_net
Optional[keras.src.models.model.Model]
None
Layers for the GMM network wrapped in a tf.keras.Sequential class.
n_gmm
Optional[int]
None
Number of components in GMM.
recon_features
Callable
<function eucl_cosim_features at 0x280c66430>
Function to extract features from the reconstructed instance by the decoder.
data_type
Optional[str]
None
Optionally specifiy the data type (tabular, image or time-series). Added to metadata.
Methods
fit
fitfit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function loss_aegmm at 0x28ee8c310>, w_energy: float = 0.1, w_cov_diag: float = 0.005, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, epochs: int = 20, batch_size: int = 64, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None) -> NoneTrain AEGMM model.
X
numpy.ndarray
Training batch.
loss_fn
.tensorflow.keras.losses
<function loss_aegmm at 0x28ee8c310>
Loss function used for training.
w_energy
float
0.1
Weight on sample energy loss term if default loss_aegmm loss fn is used.
w_cov_diag
float
0.005
Weight on covariance regularizing loss term if default loss_aegmm loss fn is used.
optimizer
Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]
<class 'keras.src.optimizers.adam.Adam'>
Optimizer used for training.
epochs
int
20
Number of training epochs.
batch_size
int
64
Batch size used for training.
verbose
bool
True
Whether to print training progress.
log_metric
Tuple[str, ForwardRef('tf.keras.metrics')]
None
Additional metrics whose progress will be displayed if verbose equals True.
callbacks
.tensorflow.keras.callbacks
None
Callbacks used during training.
Returns
Type:
None
infer_threshold
infer_thresholdinfer_threshold(X: numpy.ndarray, threshold_perc: float = 95.0, batch_size: int = 10000000000) -> NoneUpdate threshold by a value inferred from the percentage of instances considered to be
outliers in a sample of the dataset.
X
numpy.ndarray
Batch of instances.
threshold_perc
float
95.0
Percentage of X considered to be normal based on the outlier score.
batch_size
int
10000000000
Batch size used when making predictions with the AEGMM.
Returns
Type:
None
predict
predictpredict(X: numpy.ndarray, batch_size: int = 10000000000, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]Compute outlier scores and transform into outlier predictions.
X
numpy.ndarray
Batch of instances.
batch_size
int
10000000000
Batch size used when making predictions with the AEGMM.
return_instance_score
bool
True
Whether to return instance level outlier scores.
Returns
Type:
Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]
score
scorescore(X: numpy.ndarray, batch_size: int = 10000000000) -> numpy.ndarrayCompute outlier scores.
X
numpy.ndarray
Batch of instances to analyze.
batch_size
int
10000000000
Batch size used when making predictions with the AEGMM.
Returns
Type:
numpy.ndarray
Last updated
Was this helpful?

