alibi_detect.od.vae
Constants
logger
loggerlogger: logging.Logger = <Logger alibi_detect.od.vae (WARNING)>Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.
OutlierVAE
OutlierVAEInherits from: BaseDetector, FitMixin, ThresholdMixin, ABC
Constructor
OutlierVAE(self, threshold: float = None, score_type: str = 'mse', vae: keras.src.models.model.Model = None, encoder_net: keras.src.models.model.Model = None, decoder_net: keras.src.models.model.Model = None, latent_dim: int = None, samples: int = 10, beta: float = 1.0, data_type: str = None) -> Nonethreshold
Optional[float]
None
Threshold used for outlier score to determine outliers.
score_type
str
'mse'
Metric used for outlier scores. Either 'mse' (mean squared error) or 'proba' (reconstruction probabilities) supported.
vae
Optional[keras.src.models.model.Model]
None
A trained tf.keras model if available.
encoder_net
Optional[keras.src.models.model.Model]
None
Layers for the encoder wrapped in a tf.keras.Sequential class if no 'vae' is specified.
decoder_net
Optional[keras.src.models.model.Model]
None
Layers for the decoder wrapped in a tf.keras.Sequential class if no 'vae' is specified.
latent_dim
Optional[int]
None
Dimensionality of the latent space.
samples
int
10
Number of samples sampled to evaluate each instance.
beta
float
1.0
Beta parameter for KL-divergence loss term.
data_type
Optional[str]
None
Optionally specify the data type (tabular, image or time-series). Added to metadata.
Methods
feature_score
feature_scorefeature_score(X_orig: numpy.ndarray, X_recon: numpy.ndarray) -> numpy.ndarrayCompute feature level outlier scores.
X_orig
numpy.ndarray
Batch of original instances.
X_recon
numpy.ndarray
Batch of reconstructed instances.
Returns
Type:
numpy.ndarray
fit
fitfit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function elbo at 0x28ee8c040>, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, cov_elbo: dict = {'sim': 0.05}, epochs: int = 20, batch_size: int = 64, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None) -> NoneTrain VAE model.
X
numpy.ndarray
Training batch.
loss_fn
.tensorflow.keras.losses
<function elbo at 0x28ee8c040>
Loss function used for training.
optimizer
Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]
<class 'keras.src.optimizers.adam.Adam'>
Optimizer used for training.
cov_elbo
dict
{'sim': 0.05}
Dictionary with covariance matrix options in case the elbo loss function is used. Either use the full covariance matrix inferred from X (dict(cov_full=None)), only the variance (dict(cov_diag=None)) or a float representing the same standard deviation for each feature (e.g. dict(sim=.05)).
epochs
int
20
Number of training epochs.
batch_size
int
64
Batch size used for training.
verbose
bool
True
Whether to print training progress.
log_metric
Tuple[str, ForwardRef('tf.keras.metrics')]
None
Additional metrics whose progress will be displayed if verbose equals True.
callbacks
.tensorflow.keras.callbacks
None
Callbacks used during training.
Returns
Type:
None
infer_threshold
infer_thresholdinfer_threshold(X: numpy.ndarray, outlier_type: str = 'instance', outlier_perc: float = 100.0, threshold_perc: float = 95.0, batch_size: int = 10000000000) -> NoneUpdate threshold by a value inferred from the percentage of instances considered to be
outliers in a sample of the dataset.
X
numpy.ndarray
Batch of instances.
outlier_type
str
'instance'
Predict outliers at the 'feature' or 'instance' level.
outlier_perc
float
100.0
Percentage of sorted feature level outlier scores used to predict instance level outlier.
threshold_perc
float
95.0
Percentage of X considered to be normal based on the outlier score.
batch_size
int
10000000000
Batch size used when making predictions with the VAE.
Returns
Type:
None
instance_score
instance_scoreinstance_score(fscore: numpy.ndarray, outlier_perc: float = 100.0) -> numpy.ndarrayCompute instance level outlier scores.
fscore
numpy.ndarray
Feature level outlier scores.
outlier_perc
float
100.0
Percentage of sorted feature level outlier scores used to predict instance level outlier.
Returns
Type:
numpy.ndarray
predict
predictpredict(X: numpy.ndarray, outlier_type: str = 'instance', outlier_perc: float = 100.0, batch_size: int = 10000000000, return_feature_score: bool = True, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]Predict whether instances are outliers or not.
X
numpy.ndarray
Batch of instances.
outlier_type
str
'instance'
Predict outliers at the 'feature' or 'instance' level.
outlier_perc
float
100.0
Percentage of sorted feature level outlier scores used to predict instance level outlier.
batch_size
int
10000000000
Batch size used when making predictions with the VAE.
return_feature_score
bool
True
Whether to return feature level outlier scores.
return_instance_score
bool
True
Whether to return instance level outlier scores.
Returns
Type:
Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]
score
scorescore(X: numpy.ndarray, outlier_perc: float = 100.0, batch_size: int = 10000000000) -> Tuple[numpy.ndarray, numpy.ndarray]Compute feature and instance level outlier scores.
X
numpy.ndarray
Batch of instances.
outlier_perc
float
100.0
Percentage of sorted feature level outlier scores used to predict instance level outlier.
batch_size
int
10000000000
Batch size used when making predictions with the VAE.
Returns
Type:
Tuple[numpy.ndarray, numpy.ndarray]
Last updated
Was this helpful?

