alibi_detect.od.seq2seq

Constants

logger

logger: logging.Logger = <Logger alibi_detect.od.seq2seq (WARNING)>

Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.

OutlierSeq2Seq

Inherits from: BaseDetector, FitMixin, ThresholdMixin, ABC

Constructor

OutlierSeq2Seq(self, n_features: int, seq_len: int, threshold: Union[float, numpy.ndarray] = None, seq2seq: keras.src.models.model.Model = None, threshold_net: keras.src.models.model.Model = None, latent_dim: int = None, output_activation: str = None, beta: float = 1.0) -> None
Name
Type
Default
Description

n_features

int

Number of features in the time series.

seq_len

int

Sequence length fed into the Seq2Seq model.

threshold

Union[float, numpy.ndarray, None]

None

Threshold used for outlier detection. Can be a float or feature-wise array.

seq2seq

Optional[keras.src.models.model.Model]

None

A trained seq2seq model if available.

threshold_net

Optional[keras.src.models.model.Model]

None

Layers for the threshold estimation network wrapped in a tf.keras.Sequential class if no 'seq2seq' is specified.

latent_dim

Optional[int]

None

Latent dimension of the encoder and decoder.

output_activation

Optional[str]

None

Activation used in the Dense output layer of the decoder.

beta

float

1.0

Weight on the threshold estimation loss term.

Methods

feature_score

feature_score(X_orig: numpy.ndarray, X_recon: numpy.ndarray, threshold_est: numpy.ndarray) -> numpy.ndarray

Compute feature level outlier scores.

Name
Type
Default
Description

X_orig

numpy.ndarray

Original time series.

X_recon

numpy.ndarray

Reconstructed time series.

threshold_est

numpy.ndarray

Estimated threshold from the decoder's latent space.

Returns

  • Type: numpy.ndarray

fit

fit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function mean_squared_error at 0x169a64ca0>, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, epochs: int = 20, batch_size: int = 64, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None) -> None

Train Seq2Seq model.

Name
Type
Default
Description

X

numpy.ndarray

Univariate or multivariate time series. Shape equals (batch, features) or (batch, sequence length, features).

loss_fn

.tensorflow.keras.losses

<function mean_squared_error at 0x169a64ca0>

Loss function used for training.

optimizer

Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]

<class 'keras.src.optimizers.adam.Adam'>

Optimizer used for training.

epochs

int

20

Number of training epochs.

batch_size

int

64

Batch size used for training.

verbose

bool

True

Whether to print training progress.

log_metric

Tuple[str, ForwardRef('tf.keras.metrics')]

None

Additional metrics whose progress will be displayed if verbose equals True.

callbacks

.tensorflow.keras.callbacks

None

Callbacks used during training.

Returns

  • Type: None

infer_threshold

infer_threshold(X: numpy.ndarray, outlier_perc: Union[int, float] = 100.0, threshold_perc: Union[int, float, numpy.ndarray, list] = 95.0, batch_size: int = 10000000000) -> None

Update the outlier threshold by using a sequence of instances from the dataset

of which the fraction of features which are outliers are known. This fraction can be across all features or per feature.

Name
Type
Default
Description

X

numpy.ndarray

Univariate or multivariate time series.

outlier_perc

Union[int, float]

100.0

Percentage of sorted feature level outlier scores used to predict instance level outlier.

threshold_perc

Union[int, float, numpy.ndarray, list]

95.0

Percentage of X considered to be normal based on the outlier score. Overall (float) or feature-wise (array or list).

batch_size

int

10000000000

Batch size used when making predictions with the seq2seq model.

Returns

  • Type: None

instance_score

instance_score(fscore: numpy.ndarray, outlier_perc: float = 100.0) -> numpy.ndarray

Compute instance level outlier scores. instance in this case means the data along the

first axis of the original time series passed to the predictor.

Name
Type
Default
Description

fscore

numpy.ndarray

Feature level outlier scores.

outlier_perc

float

100.0

Percentage of sorted feature level outlier scores used to predict instance level outlier.

Returns

  • Type: numpy.ndarray

predict

predict(X: numpy.ndarray, outlier_type: str = 'instance', outlier_perc: float = 100.0, batch_size: int = 10000000000, return_feature_score: bool = True, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]

Compute outlier scores and transform into outlier predictions.

Name
Type
Default
Description

X

numpy.ndarray

Univariate or multivariate time series.

outlier_type

str

'instance'

Predict outliers at the 'feature' or 'instance' level.

outlier_perc

float

100.0

Percentage of sorted feature level outlier scores used to predict instance level outlier.

batch_size

int

10000000000

Batch size used when making predictions with the seq2seq model.

return_feature_score

bool

True

Whether to return feature level outlier scores.

return_instance_score

bool

True

Whether to return instance level outlier scores.

Returns

  • Type: Dict[Dict[str, str], Dict[numpy.ndarray, numpy.ndarray]]

score

score(X: numpy.ndarray, outlier_perc: float = 100.0, batch_size: int = 10000000000) -> Tuple[numpy.ndarray, numpy.ndarray]

Compute feature and instance level outlier scores.

Name
Type
Default
Description

X

numpy.ndarray

Univariate or multivariate time series.

outlier_perc

float

100.0

Percentage of sorted feature level outlier scores used to predict instance level outlier.

batch_size

int

10000000000

Batch size used when making predictions with the seq2seq model.

Returns

  • Type: Tuple[numpy.ndarray, numpy.ndarray]

Last updated

Was this helpful?