alibi.utils.visualization
ImageVisualizationMethod
ImageVisualizationMethod
Inherits from: Enum
An enumeration.
VisualizeSign
VisualizeSign
Inherits from: Enum
An enumeration.
Functions
heatmap
heatmap
heatmap(data: numpy.ndarray, xticklabels: List[str], yticklabels: List[str], vmin: Optional[float] = None, vmax: Optional[float] = None, cmap: Union[str, matplotlib.colors.Colormap] = 'magma', robust: Optional[bool] = False, annot: Optional[bool] = True, linewidths: float = 3, linecolor: str = 'w', cbar: bool = True, cbar_label: str = '', cbar_ax: Optional[matplotlib.axes._axes.Axes] = None, cbar_kws: Optional[dict] = None, fmt: Union[str, matplotlib.ticker.Formatter] = '{x:.2f}', textcolors: Tuple[str, str] = ('white', 'black'), threshold: Optional[float] = None, text_kws: Optional[dict] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, kwargs) -> matplotlib.axes._axes.Axes
Constructs a heatmap with annotation.
data
numpy.ndarray
A 2D numpy
array of shape M x N
.
xticklabels
List[str]
A list or array of length N
with the labels for the columns.
yticklabels
List[str]
A list or array of length M
with the labels for the rows.
vmin
Optional[float]
None
vmax
Optional[float]
None
cmap
Union[str, matplotlib.colors.Colormap]
'magma'
The Colormap instance or registered colormap name used to map scalar data to colors. This parameter is ignored for RGB(A) data.
robust
Optional[bool]
False
If True
and vmin
or vmax
are absent, the colormap range is computed with robust quantiles instead of the extreme values. Uses numpy.nanpercentile
_ with q
values set to 2 and 98, respectively. .. _numpy.nanpercentile: https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html
annot
Optional[bool]
True
Boolean flag whether to annotate the heatmap. Default True
.
linewidths
float
3
Width of the lines that will divide each cell. Default 3.
linecolor
str
'w'
Color of the lines that will divide each cell. Default "w"
.
cbar
bool
True
Boolean flag whether to draw a colorbar.
cbar_label
str
''
Optional label for the colorbar.
cbar_ax
Optional[matplotlib.axes._axes.Axes]
None
Optional axes in which to draw the colorbar, otherwise take space from the main axes.
cbar_kws
Optional[dict]
None
An optional dictionary with arguments to matplotlib.figure.Figure.colorbar
_. .. _matplotlib.figure.Figure.colorbar: https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar
fmt
Union[str, matplotlib.ticker.Formatter]
'{x:.2f}'
Format of the annotations inside the heatmap. This should either use the string format method, e.g. "{x:.2f}"
, or be a matplotlib.ticker.Formatter
_. Default "{x:.2f}"
. .. _matplotlib.ticker.Formatter: https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Formatter
textcolors
Tuple[str, str]
('white', 'black')
A tuple of matplotlib
colors. The first is used for values below a threshold, the second for those above. Default ("black", "white")
.
threshold
Optional[float]
None
Optional value in data units according to which the colors from textcolors are applied. If None
(the default) uses the middle of the colormap as separation.
text_kws
Optional[dict]
None
An optional dictionary with arguments to matplotlib.axes.Axes.text
_. .. _matplotlib.axes.Axes.text: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.text.html
ax
Optional[matplotlib.axes._axes.Axes]
None
Axes in which to draw the plot, otherwise use the currently-active axes.
kwargs
All other keyword arguments are passed to matplotlib.axes.Axes.imshow
_. .. _matplotlib.axes.Axes.imshow: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
vmin,
vmax
When using scalar data and no explicit norm, vmin
and vmax
define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. It is an error to use vmin/vmax
when norm is given. When using RGB(A) data, parameters vmin/vmax
are ignored.
Returns
Type:
matplotlib.axes._axes.Axes
visualize_image_attr
visualize_image_attr
visualize_image_attr(attr: numpy.ndarray, original_image: Optional[numpy.ndarray] = None, method: str = 'heat_map', sign: str = 'absolute_value', plt_fig_axis: Optional[Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]] = None, outlier_perc: Union[int, float] = 2, cmap: Optional[str] = None, alpha_overlay: float = 0.5, show_colorbar: bool = False, title: Optional[str] = None, fig_size: Tuple[int, int] = (6, 6), use_pyplot: bool = True) -> Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]
Visualizes attribution for a given image by normalizing attribution values of the desired sign ('positive'
| 'negative'
| 'absolute_value'
| 'all'
) and displaying them using the desired mode in a matplotlib
figure.
attr
numpy.ndarray
Numpy
array corresponding to attributions to be visualized. Shape must be in the form (H, W, C)
, with channels as last dimension. Shape must also match that of the original image if provided.
original_image
Optional[numpy.ndarray]
None
Numpy
array corresponding to original image. Shape must be in the form (H, W, C)
, with channels as the last dimension. Image can be provided either with float
values in range 0-1 or int
values between 0-255. This is a necessary argument for any visualization method which utilizes the original image.
method
str
'heat_map'
Chosen method for visualizing attribution. Supported options are: - 'heat_map'
- Display heat map of chosen attributions - 'blended_heat_map'
- Overlay heat map over greyscale version of original image. Parameter alpha_overlay corresponds to alpha of heat map. - 'original_image'
- Only display original image. - 'masked_image
' - Mask image (pixel-wise multiply) by normalized attribution values. - 'alpha_scaling'
- Sets alpha channel of each pixel to be equal to normalized attribution value. Default: 'heat_map'
.
sign
str
'absolute_value'
Chosen sign of attributions to visualize. Supported options are: - 'positive'
- Displays only positive pixel attributions. - 'absolute_value'
- Displays absolute value of attributions. - 'negative'
- Displays only negative pixel attributions. - 'all'
- Displays both positive and negative attribution values. This is not supported for 'masked_image'
or 'alpha_scaling'
modes, since signed information cannot be represented in these modes.
plt_fig_axis
Optional[Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]]
None
Tuple of matplotlib.pyplot.figure
and axis
on which to visualize. If None
is provided, then a new figure and axis are created.
outlier_perc
Union[int, float]
2
Top attribution values which correspond to a total of outlier_perc
percentage of the total attribution are set to 1 and scaling is performed using the minimum of these values. For sign='all'
, outliers and scale value are computed using absolute value of attributions.
cmap
Optional[str]
None
String corresponding to desired colormap for heatmap visualization. This defaults to 'Reds'
for negative sign, 'Blues'
for absolute value, 'Greens'
for positive sign, and a spectrum from red to green for all. Note that this argument is only used for visualizations displaying heatmaps.
alpha_overlay
float
0.5
Visualizes attribution for a given image by normalizing attribution values of the desired sign (positive, negative, absolute value, or all) and displaying them using the desired mode in a matplotlib figure.
show_colorbar
bool
False
Displays colorbar for heatmap below the visualization. If given method does not use a heatmap, then a colormap axis is created and hidden. This is necessary for appropriate alignment when visualizing multiple plots, some with colorbars and some without.
title
Optional[str]
None
The title for the plot. If None
, no title is set.
fig_size
Tuple[int, int]
(6, 6)
Size of figure created.
use_pyplot
bool
True
If True
, uses pyplot to create and show figure and displays the figure after creating. If False
, uses matplotlib
object-oriented API and simply returns a figure object without showing.
Returns
Type:
Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]
Last updated
Was this helpful?