alibi.utils.gradients
Functions
num_grad_batch
num_grad_batch
num_grad_batch(func: Callable, X: numpy.ndarray, args: Tuple = (), eps: Union[float, numpy.ndarray] = 1e-08) -> numpy.ndarray
Calculate the numerical gradients of a vector-valued function (typically a prediction function in classification) with respect to a batch of arrays X
.
Name
Type
Default
Description
func
Callable
Function to be differentiated.
X
numpy.ndarray
A batch of vectors at which to evaluate the gradient of the function.
args
Tuple
()
eps
Union[float, numpy.ndarray]
1e-08
Returns
Type:
numpy.ndarray
perturb
perturb
perturb(X: numpy.ndarray, eps: Union[float, numpy.ndarray] = 1e-08, proba: bool = False) -> Tuple[numpy.ndarray, numpy.ndarray]
Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.
Name
Type
Default
Description
X
numpy.ndarray
Array to be perturbed.
eps
Union[float, numpy.ndarray]
1e-08
Size of perturbation.
proba
bool
False
If True
, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1.
Returns
Type:
Tuple[numpy.ndarray, numpy.ndarray]
Last updated
Was this helpful?