alibi.utils.approximation_methods
Constants
SUPPORTED_RIEMANN_METHODS
SUPPORTED_RIEMANN_METHODS
SUPPORTED_RIEMANN_METHODS: list = ['riemann_left', 'riemann_right', 'riemann_middle', 'riemann_trapezoid']
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
SUPPORTED_METHODS
SUPPORTED_METHODS
SUPPORTED_METHODS: list = ['riemann_left', 'riemann_right', 'riemann_middle', 'riemann_trapezoid', 'gau...
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
Riemann
Riemann
Inherits from: Enum
An enumeration.
Functions
approximation_parameters
approximation_parameters
approximation_parameters(method: str) -> Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
Retrieves parameters for the input approximation method
.
method
str
The name of the approximation method. Currently supported only: 'riemann_*'
and 'gausslegendre
'. Check :py:data:alibi.utils.approximation_methods.SUPPORTED_RIEMANN_METHODS
for all 'riemann_*'
possible values.
Returns
Type:
Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
gauss_legendre_builders
gauss_legendre_builders
gauss_legendre_builders() -> Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
np.polynomial.legendre
function helps to compute step sizes and alpha coefficients using gauss-legendre quadrature rule. Since numpy
returns the integration parameters in different scales we need to rescale them to adjust to the desired scale.
Gauss Legendre quadrature rule for approximating the integrals was originally proposed by [Xue Feng and her intern Hauroun Habeeb] (https://research.fb.com/people/feng-xue/).
n
The number of integration steps.
Returns
Type:
Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
riemann_builders
riemann_builders
riemann_builders(method: alibi.utils.approximation_methods.Riemann = <Riemann.trapezoid: 4>) -> Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
Step sizes are identical and alphas are scaled in [0, 1].
method
alibi.utils.approximation_methods.Riemann
<Riemann.trapezoid: 4>
Riemann method: Riemann.left
n
The number of integration steps.
Returns
Type:
Tuple[Callable[[.[<class 'int'>]], List[float]], Callable[[.[<class 'int'>]], List[float]]]
Last updated
Was this helpful?