alibi_detect.utils.tensorflow.prediction

Functions

predict_batch

predict_batch(x: Union[list, numpy.ndarray, tensorflow.python.framework.tensor.Tensor], model: Union[Callable, keras.src.models.model.Model], batch_size: int = 10000000000, preprocess_fn: Optional[Callable] = None, dtype: Union[type[numpy.generic], tensorflow.python.framework.dtypes.DType] = <class 'numpy.float32'>) -> Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, tuple]

Make batch predictions on a model.

Name
Type
Default
Description

x

Union[list, numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Batch of instances.

model

Union[Callable, keras.src.models.model.Model]

tf.keras model or one of the other permitted types defined in Data.

batch_size

int

10000000000

Batch size used during prediction.

preprocess_fn

Optional[Callable]

None

Optional preprocessing function for each batch.

dtype

Union[type[numpy.generic], tensorflow.python.framework.dtypes.DType]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or tf.float32.

Returns

  • Type: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor, tuple]

predict_batch_transformer

predict_batch_transformer(x: Union[list, numpy.ndarray], model: keras.src.models.model.Model, tokenizer: Callable, max_len: int, batch_size: int = 10000000000, dtype: Union[type[numpy.generic], tensorflow.python.framework.dtypes.DType] = <class 'numpy.float32'>) -> Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Make batch predictions using a transformers tokenizer and model.

Name
Type
Default
Description

x

Union[list, numpy.ndarray]

Batch of instances.

model

keras.src.models.model.Model

Transformer model.

tokenizer

Callable

Tokenizer for model.

max_len

int

Max token length.

batch_size

int

10000000000

Batch size.

dtype

Union[type[numpy.generic], tensorflow.python.framework.dtypes.DType]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or tf.float32.

Returns

  • Type: Union[numpy.ndarray, tensorflow.python.framework.tensor.Tensor]

Last updated

Was this helpful?