alibi_detect.utils.visualize
Functions
plot_feature_outlier_image
plot_feature_outlier_imageplot_feature_outlier_image(od_preds: Dict, X: numpy.ndarray, X_recon: Optional[numpy.ndarray] = None, instance_ids: Optional[list] = None, max_instances: int = 5, outliers_only: bool = False, n_channels: int = 3, figsize: tuple = (20, 20)) -> NonePlot feature (pixel) wise outlier scores for images.
od_preds
Dict
Output of an outlier detector's prediction.
X
numpy.ndarray
Batch of instances to apply outlier detection to.
X_recon
Optional[numpy.ndarray]
None
Reconstructed instances of X.
instance_ids
Optional[list]
None
List with indices of instances to display.
max_instances
int
5
Maximum number of instances to display.
outliers_only
bool
False
Whether to only show outliers or not.
n_channels
int
3
Number of channels of the images.
figsize
tuple
(20, 20)
Tuple for the figure size.
Returns
Type:
None
plot_feature_outlier_tabular
plot_feature_outlier_tabularplot_feature_outlier_tabular(od_preds: Dict, X: numpy.ndarray, X_recon: Optional[numpy.ndarray] = None, threshold: Optional[float] = None, instance_ids: Optional[list] = None, max_instances: int = 5, top_n: int = 1000000000000, outliers_only: bool = False, feature_names: Optional[list] = None, width: float = 0.2, figsize: tuple = (20, 10)) -> NonePlot feature wise outlier scores for tabular data.
od_preds
Dict
Output of an outlier detector's prediction.
X
numpy.ndarray
Batch of instances to apply outlier detection to.
X_recon
Optional[numpy.ndarray]
None
Reconstructed instances of X.
threshold
Optional[float]
None
Threshold used for outlier score to determine outliers.
instance_ids
Optional[list]
None
List with indices of instances to display.
max_instances
int
5
Maximum number of instances to display.
top_n
int
1000000000000
Maixmum number of features to display, ordered by outlier score.
outliers_only
bool
False
Whether to only show outliers or not.
feature_names
Optional[list]
None
List with feature names.
width
float
0.2
Column width for bar charts.
figsize
tuple
(20, 10)
Tuple for the figure size.
Returns
Type:
None
plot_feature_outlier_ts
plot_feature_outlier_tsplot_feature_outlier_ts(od_preds: Dict, X: numpy.ndarray, threshold: Union[float, int, list, numpy.ndarray], window: Optional[tuple] = None, t: Optional[numpy.ndarray] = None, X_orig: Optional[numpy.ndarray] = None, width: float = 0.2, figsize: tuple = (20, 8), ylim: tuple = (None, None)) -> NonePlot feature wise outlier scores for time series data.
od_preds
Dict
Output of an outlier detector's prediction.
X
numpy.ndarray
Time series to apply outlier detection to.
threshold
Union[float, int, list, numpy.ndarray]
Threshold used to classify outliers or adversarial instances.
window
Optional[tuple]
None
Start and end timestep to plot.
t
Optional[numpy.ndarray]
None
Timesteps.
X_orig
Optional[numpy.ndarray]
None
Optional original time series without outliers.
width
float
0.2
Column width for bar charts.
figsize
tuple
(20, 8)
Tuple for the figure size.
ylim
tuple
(None, None)
Min and max y-axis values for the outlier scores.
Returns
Type:
None
plot_instance_score
plot_instance_scoreplot_instance_score(preds: Dict, target: numpy.ndarray, labels: numpy.ndarray, threshold: float, ylim: tuple = (None, None)) -> NoneScatter plot of a batch of outlier or adversarial scores compared to the threshold.
preds
Dict
Dictionary returned by predictions of an outlier or adversarial detector.
target
numpy.ndarray
Ground truth.
labels
numpy.ndarray
List with names of classification labels.
threshold
float
Threshold used to classify outliers or adversarial instances.
ylim
tuple
(None, None)
Min and max y-axis values.
Returns
Type:
None
plot_roc
plot_rocplot_roc(roc_data: Dict[str, Dict[str, numpy.ndarray]], figsize: tuple = (10, 5)) -> NonePlot ROC curve.
roc_data
Dict[str, Dict[str, numpy.ndarray]]
Dictionary with as key the label to show in the legend and as value another dictionary with as keys scores and labels with respectively the outlier scores and outlier labels.
figsize
tuple
(10, 5)
Figure size.
Returns
Type:
None
Last updated
Was this helpful?

