alibi_detect.utils.visualize

Functions

plot_feature_outlier_image

plot_feature_outlier_image(od_preds: Dict, X: numpy.ndarray, X_recon: Optional[numpy.ndarray] = None, instance_ids: Optional[list] = None, max_instances: int = 5, outliers_only: bool = False, n_channels: int = 3, figsize: tuple = (20, 20)) -> None

Plot feature (pixel) wise outlier scores for images.

Name
Type
Default
Description

od_preds

Dict

Output of an outlier detector's prediction.

X

numpy.ndarray

Batch of instances to apply outlier detection to.

X_recon

Optional[numpy.ndarray]

None

Reconstructed instances of X.

instance_ids

Optional[list]

None

List with indices of instances to display.

max_instances

int

5

Maximum number of instances to display.

outliers_only

bool

False

Whether to only show outliers or not.

n_channels

int

3

Number of channels of the images.

figsize

tuple

(20, 20)

Tuple for the figure size.

Returns

  • Type: None

plot_feature_outlier_tabular

plot_feature_outlier_tabular(od_preds: Dict, X: numpy.ndarray, X_recon: Optional[numpy.ndarray] = None, threshold: Optional[float] = None, instance_ids: Optional[list] = None, max_instances: int = 5, top_n: int = 1000000000000, outliers_only: bool = False, feature_names: Optional[list] = None, width: float = 0.2, figsize: tuple = (20, 10)) -> None

Plot feature wise outlier scores for tabular data.

Name
Type
Default
Description

od_preds

Dict

Output of an outlier detector's prediction.

X

numpy.ndarray

Batch of instances to apply outlier detection to.

X_recon

Optional[numpy.ndarray]

None

Reconstructed instances of X.

threshold

Optional[float]

None

Threshold used for outlier score to determine outliers.

instance_ids

Optional[list]

None

List with indices of instances to display.

max_instances

int

5

Maximum number of instances to display.

top_n

int

1000000000000

Maixmum number of features to display, ordered by outlier score.

outliers_only

bool

False

Whether to only show outliers or not.

feature_names

Optional[list]

None

List with feature names.

width

float

0.2

Column width for bar charts.

figsize

tuple

(20, 10)

Tuple for the figure size.

Returns

  • Type: None

plot_feature_outlier_ts

plot_feature_outlier_ts(od_preds: Dict, X: numpy.ndarray, threshold: Union[float, int, list, numpy.ndarray], window: Optional[tuple] = None, t: Optional[numpy.ndarray] = None, X_orig: Optional[numpy.ndarray] = None, width: float = 0.2, figsize: tuple = (20, 8), ylim: tuple = (None, None)) -> None

Plot feature wise outlier scores for time series data.

Name
Type
Default
Description

od_preds

Dict

Output of an outlier detector's prediction.

X

numpy.ndarray

Time series to apply outlier detection to.

threshold

Union[float, int, list, numpy.ndarray]

Threshold used to classify outliers or adversarial instances.

window

Optional[tuple]

None

Start and end timestep to plot.

t

Optional[numpy.ndarray]

None

Timesteps.

X_orig

Optional[numpy.ndarray]

None

Optional original time series without outliers.

width

float

0.2

Column width for bar charts.

figsize

tuple

(20, 8)

Tuple for the figure size.

ylim

tuple

(None, None)

Min and max y-axis values for the outlier scores.

Returns

  • Type: None

plot_instance_score

plot_instance_score(preds: Dict, target: numpy.ndarray, labels: numpy.ndarray, threshold: float, ylim: tuple = (None, None)) -> None

Scatter plot of a batch of outlier or adversarial scores compared to the threshold.

Name
Type
Default
Description

preds

Dict

Dictionary returned by predictions of an outlier or adversarial detector.

target

numpy.ndarray

Ground truth.

labels

numpy.ndarray

List with names of classification labels.

threshold

float

Threshold used to classify outliers or adversarial instances.

ylim

tuple

(None, None)

Min and max y-axis values.

Returns

  • Type: None

plot_roc

plot_roc(roc_data: Dict[str, Dict[str, numpy.ndarray]], figsize: tuple = (10, 5)) -> None

Plot ROC curve.

Name
Type
Default
Description

roc_data

Dict[str, Dict[str, numpy.ndarray]]

Dictionary with as key the label to show in the legend and as value another dictionary with as keys scores and labels with respectively the outlier scores and outlier labels.

figsize

tuple

(10, 5)

Figure size.

Returns

  • Type: None

Last updated

Was this helpful?