alibi_detect.utils.perturbation
Functions
apply_mask
apply_maskapply_mask(X: numpy.ndarray, mask_size: tuple = (4, 4), n_masks: int = 1, coord: Optional[tuple] = None, channels: list = [0, 1, 2], mask_type: str = 'uniform', noise_distr: tuple = (0, 1), noise_rng: tuple = (0, 1), clip_rng: tuple = (0, 1)) -> Tuple[numpy.ndarray, numpy.ndarray]Name
Type
Default
Description
brightness
brightnessbrightness(x: numpy.ndarray, strength: float, xrange: Optional[tuple] = None) -> numpy.ndarrayName
Type
Default
Description
clipped_zoom
clipped_zoomName
Type
Default
Description
contrast
contrastName
Type
Default
Description
defocus_blur
defocus_blurName
Type
Default
Description
disk
diskName
Type
Default
Description
elastic_transform
elastic_transformName
Type
Default
Description
fog
fogName
Type
Default
Description
gaussian_blur
gaussian_blurName
Type
Default
Description
gaussian_noise
gaussian_noiseName
Type
Default
Description
glass_blur
glass_blurName
Type
Default
Description
impulse_noise
impulse_noiseName
Type
Default
Description
inject_outlier_categorical
inject_outlier_categoricalName
Type
Default
Description
inject_outlier_tabular
inject_outlier_tabularName
Type
Default
Description
inject_outlier_ts
inject_outlier_tsName
Type
Default
Description
jpeg_compression
jpeg_compressionName
Type
Default
Description
pixelate
pixelateName
Type
Default
Description
plasma_fractal
plasma_fractalName
Type
Default
Description
saturate
saturateName
Type
Default
Description
scale_minmax
scale_minmaxName
Type
Default
Description
shot_noise
shot_noiseName
Type
Default
Description
speckle_noise
speckle_noiseName
Type
Default
Description
zoom_blur
zoom_blurName
Type
Default
Description
Last updated
Was this helpful?

