alibi_detect.utils.pytorch.prediction

Functions

predict_batch

predict_batch(x: Union[list, numpy.ndarray, torch.Tensor], model: Union[Callable, torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], device: Union[Literal[cuda, gpu, cpu], torch.device, None] = None, batch_size: int = 10000000000, preprocess_fn: Optional[Callable] = None, dtype: Union[type[numpy.generic], torch.dtype] = <class 'numpy.float32'>) -> Union[numpy.ndarray, torch.Tensor, tuple]

Make batch predictions on a model.

Name
Type
Default
Description

x

Union[list, numpy.ndarray, torch.Tensor]

Batch of instances.

model

Union[Callable, torch.nn.modules.module.Module, torch.nn.modules.container.Sequential]

PyTorch model.

device

Union[Literal[cuda, gpu, cpu], torch.device, None]

None

Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device.

batch_size

int

10000000000

Batch size used during prediction.

preprocess_fn

Optional[Callable]

None

Optional preprocessing function for each batch.

dtype

Union[type[numpy.generic], torch.dtype]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or torch.float32.

Returns

  • Type: Union[numpy.ndarray, torch.Tensor, tuple]

predict_batch_transformer

predict_batch_transformer(x: Union[list, numpy.ndarray], model: Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential], tokenizer: Callable, max_len: int, device: Union[Literal[cuda, gpu, cpu], torch.device, None] = None, batch_size: int = 10000000000, dtype: Union[type[numpy.generic], torch.dtype] = <class 'numpy.float32'>) -> Union[numpy.ndarray, torch.Tensor, tuple]

Make batch predictions using a transformers tokenizer and model.

Name
Type
Default
Description

x

Union[list, numpy.ndarray]

Batch of instances.

model

Union[torch.nn.modules.module.Module, torch.nn.modules.container.Sequential]

PyTorch model.

tokenizer

Callable

Tokenizer for model.

max_len

int

Max sequence length for tokens.

device

Union[Literal[cuda, gpu, cpu], torch.device, None]

None

Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either 'cuda', 'gpu', 'cpu' or an instance of torch.device.

batch_size

int

10000000000

Batch size used during prediction.

dtype

Union[type[numpy.generic], torch.dtype]

<class 'numpy.float32'>

Model output type, e.g. np.float32 or torch.float32.

Returns

  • Type: Union[numpy.ndarray, torch.Tensor, tuple]

Last updated

Was this helpful?