Checking Pipeline readiness
Local example settings.
%env INFER_REST_ENDPOINT=http://0.0.0.0:9000
%env INFER_GRPC_ENDPOINT=0.0.0.0:9000
%env SELDON_SCHEDULE_HOST=0.0.0.0:9004env: INFER_REST_ENDPOINT=http://0.0.0.0:9000
env: INFER_GRPC_ENDPOINT=0.0.0.0:9000
env: SELDON_SCHEDULE_HOST=0.0.0.0:9004
Remote k8s cluster example settings - change as neeed for your needs.
#%env INFER_REST_ENDPOINT=http://172.19.255.1:80
#%env INFER_GRPC_ENDPOINT=172.19.255.1:80
#%env SELDON_SCHEDULE_HOST=172.19.255.2:9004Model Chain - Ready Check
We will check the readiness of the Pipeline after every change to model and pipeline.
cat ./pipelines/tfsimples.yamlapiVersion: mlops.seldon.io/v1alpha1
kind: Pipeline
metadata:
name: tfsimples
spec:
steps:
- name: tfsimple1
- name: tfsimple2
inputs:
- tfsimple1
tensorMap:
tfsimple1.outputs.OUTPUT0: INPUT0
tfsimple1.outputs.OUTPUT1: INPUT1
output:
steps:
- tfsimple2
Models will still be ready even though Pipeline terminated
Kubernetes Resource Example
Last updated
Was this helpful?

