Explainer examples

Learn how to implement model explainability in Seldon Core using Anchor explainers for both tabular and text data

Explainer Examples

Anchor Tabular Explainer for SKLearn Income Model

cat ./models/income.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
  name: income
spec:
  storageUri: "gs://seldon-models/scv2/examples/mlserver_1.3.5/income/classifier"
  requirements:
  - sklearn
kubectl apply -f ./models/income.yaml -n ${NAMESPACE}
pipeline.mlops.seldon.io/income created
kubectl wait --for condition=ready --timeout=300s model income -n ${NAMESPACE}
model.mlops.seldon.io/income condition met
curl --location 'http://${SELDON_INFER_HOST}/v2/models/income/infer' \
	--header 'Content-Type: application/json'  \
    --data '{"inputs": [{"name": "predict", "shape": [1, 12], "datatype": "FP32", "data": [[47,4,1,1,1,3,4,1,0,0,40,9]]}]}'
{
	"model_name": "income_1",
	"model_version": "1",
	"id": "c65b8302-85af-4bac-aac5-91e3bedebee8",
	"parameters": {},
	"outputs": [
		{
			"name": "predict",
			"shape": [
				1,
				1
			],
			"datatype": "INT64",
			"data": [
				0
			]
		}
	]
}

Anchor Text Explainer for SKLearn Movies Sentiment Model

Last updated

Was this helpful?