LogoLogo
  • MLServer
  • Getting Started
  • User Guide
    • Content Types (and Codecs)
    • OpenAPI Support
    • Parallel Inference
    • Adaptive Batching
    • Custom Inference Runtimes
    • Metrics
    • Deployment
      • Seldon Core
      • KServe
    • Streaming
  • Inference Runtimes
    • SKLearn
    • XGBoost
    • MLFlow
    • Spark MlLib
    • LightGBM
    • Catboost
    • Alibi-Detect
    • Alibi-Explain
    • HuggingFace
    • Custom
  • Reference
    • MLServer Settings
    • Model Settings
    • MLServer CLI
    • Python API
      • MLModel
      • Types
      • Codecs
      • Metrics
  • Examples
    • Serving Scikit-Learn models
    • Serving XGBoost models
    • Serving LightGBM models
    • Serving MLflow models
    • Serving a custom model
    • Serving Alibi-Detect models
    • Serving HuggingFace Transformer Models
    • Multi-Model Serving
    • Model Repository API
    • Content Type Decoding
    • Custom Conda environments in MLServer
    • Serving a custom model with JSON serialization
    • Serving models through Kafka
    • Streaming
    • Deploying a Custom Tensorflow Model with MLServer and Seldon Core
  • Changelog
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. Inference Runtimes

Custom

PreviousHuggingFaceNextReference

Last updated 7 months ago

Was this helpful?

There may be cases where the offered out-of-the-box by MLServer may not be enough, or where you may need extra custom functionality which is not included in MLServer (e.g. custom codecs). To cover these cases, MLServer lets you create custom runtimes very easily.

To learn more about how you can write custom runtimes with MLServer, check out the . Alternatively, you can also see this which walks through the process of writing a custom runtime.

inference runtimes
Custom Runtimes user guide
end-to-end example