Multi-Model Serving
Training
Name
Framework
Source
Trained Model Path
Training our mnist-svm model
mnist-svm model# Original source code and more details can be found in:
# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split
# The digits dataset
digits = datasets.load_digits()
# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)
# Split data into train and test subsets
X_train, X_test_digits, y_train, y_test_digits = train_test_split(
data, digits.target, test_size=0.5, shuffle=False)
# We learn the digits on the first half of the digits
classifier.fit(X_train, y_train)Training our mushroom-xgboost model
mushroom-xgboost modelServing
settings.json
settings.jsonmodels/mnist-svm/model-settings.json
models/mnist-svm/model-settings.jsonmodels/mushroom-xgboost/model-settings.json
models/mushroom-xgboost/model-settings.jsonStart serving our model
Testing
Testing our mnist-svm model
mnist-svm modelTesting our mushroom-xgboost model
mushroom-xgboost modelLast updated
Was this helpful?
