alibi.explainers.anchors.anchor_tabular_distributed
DistributedAnchorBaseBeam
DistributedAnchorBaseBeamInherits from: AnchorBaseBeam
Constructor
DistributedAnchorBaseBeam(self, samplers: List[Callable], **kwargs) -> Nonesamplers
List[Callable]
Objects that can be called with args (result, n_samples) tuple to draw samples.
Methods
draw_samples
draw_samplesdraw_samples(anchors: list, batch_size: int) -> Tuple[numpy.ndarray, numpy.ndarray]anchors
list
batch_size
int
anchors,
batch_size
See :py:meth:alibi.explainers.anchors.anchor_base.AnchorBaseBeam.draw_samples implementation.
Returns
Type:
Tuple[numpy.ndarray, numpy.ndarray]
DistributedAnchorTabular
DistributedAnchorTabularInherits from: AnchorTabular, Explainer, FitMixin, ABC, Base
Constructor
DistributedAnchorTabular(self, predictor: Callable, feature_names: List[str], categorical_names: Optional[Dict[int, List[str]]] = None, dtype: Type[numpy.generic] = <class 'numpy.float32'>, ohe: bool = False, seed: Optional[int] = None) -> Nonepredictor
Callable
A callable that takes a numpy array of N data points as inputs and returns N outputs.
feature_names
List[str]
List with feature names.
categorical_names
Optional[Dict[int, List[str]]]
None
Dictionary where keys are feature columns and values are the categories for the feature.
dtype
type[numpy.generic]
<class 'numpy.float32'>
A numpy scalar type that corresponds to the type of input array expected by predictor. This may be used to construct arrays of the given type to be passed through the predictor. For most use cases this argument should have no effect, but it is exposed for use with predictors that would break when called with an array of unsupported type.
ohe
bool
False
Whether the categorical variables are one-hot encoded (OHE) or not. If not OHE, they are assumed to have ordinal encodings.
seed
Optional[int]
None
Used to set the random number generator for repeatability purposes.
Methods
explain
explainexplain(X: numpy.ndarray, threshold: float = 0.95, delta: float = 0.1, tau: float = 0.15, batch_size: int = 100, coverage_samples: int = 10000, beam_size: int = 1, stop_on_first: bool = False, max_anchor_size: Optional[int] = None, min_samples_start: int = 1, n_covered_ex: int = 10, binary_cache_size: int = 10000, cache_margin: int = 1000, verbose: bool = False, verbose_every: int = 1, kwargs: typing.Any) -> alibi.api.interfaces.ExplanationX
numpy.ndarray
threshold
float
0.95
delta
float
0.1
tau
float
0.15
batch_size
int
100
coverage_samples
int
10000
beam_size
int
1
stop_on_first
bool
False
max_anchor_size
Optional[int]
None
min_samples_start
int
1
n_covered_ex
int
10
binary_cache_size
int
10000
cache_margin
int
1000
verbose
bool
False
verbose_every
int
1
X,
threshold, delta, tau, batch_size, coverage_samples, beam_size, stop_on_first, max_anchor_size, min_samples_start, n_covered_ex, binary_cache_size, cache_margin, verbose, verbose_every, **kwargs
See :py:meth:alibi.explainers.anchors.anchor_tabular.AnchorTabular.explain.
Returns
Type:
alibi.api.interfaces.Explanation
fit
fitfit(train_data: numpy.ndarray, disc_perc: tuple = (25, 50, 75), kwargs) -> alibi.explainers.anchors.anchor_tabular.AnchorTabulartrain_data
numpy.ndarray
disc_perc
tuple
(25, 50, 75)
train_data,
disc_perc, **kwargs
See :py:meth:alibi.explainers.anchors.anchor_tabular.AnchorTabular.fit superclass.
Returns
Type:
alibi.explainers.anchors.anchor_tabular.AnchorTabular
reset_predictor
reset_predictorreset_predictor(predictor: Callable) -> Nonepredictor
Callable
New model prediction function.
Returns
Type:
None
RemoteSampler
RemoteSamplerA wrapper that facilitates the use of TabularSampler for distributed sampling.
Constructor
RemoteSampler(self, *args)Methods
build_lookups
build_lookupsbuild_lookups(X: numpy.ndarray)X
numpy.ndarray
See :py:meth:alibi.explainers.anchors.anchor_tabular.TabularSampler.build_lookups.
set_instance_label
set_instance_labelset_instance_label(X: numpy.ndarray) -> intX
numpy.ndarray
The instance to be explained.
Returns
Type:
int
set_n_covered
set_n_coveredset_n_covered(n_covered: int) -> Nonen_covered
int
Number of examples where the result (and partial anchors) apply.
Returns
Type:
None
Last updated
Was this helpful?

