alibi.explainers.anchors.anchor_tabular_distributed
DistributedAnchorBaseBeam
DistributedAnchorBaseBeam
Inherits from: AnchorBaseBeam
Constructor
DistributedAnchorBaseBeam(self, samplers: List[Callable], **kwargs) -> None
samplers
List[Callable]
Objects that can be called with args (result
, n_samples
) tuple to draw samples.
Methods
draw_samples
draw_samples
draw_samples(anchors: list, batch_size: int) -> Tuple[numpy.ndarray, numpy.ndarray]
anchors
list
batch_size
int
anchors,
batch_size
See :py:meth:alibi.explainers.anchors.anchor_base.AnchorBaseBeam.draw_samples
implementation.
Returns
Type:
Tuple[numpy.ndarray, numpy.ndarray]
DistributedAnchorTabular
DistributedAnchorTabular
Inherits from: AnchorTabular
, Explainer
, FitMixin
, ABC
, Base
Constructor
DistributedAnchorTabular(self, predictor: Callable, feature_names: List[str], categorical_names: Optional[Dict[int, List[str]]] = None, dtype: Type[numpy.generic] = <class 'numpy.float32'>, ohe: bool = False, seed: Optional[int] = None) -> None
predictor
Callable
A callable that takes a numpy
array of N
data points as inputs and returns N
outputs.
feature_names
List[str]
List with feature names.
categorical_names
Optional[Dict[int, List[str]]]
None
Dictionary where keys are feature columns and values are the categories for the feature.
dtype
type[numpy.generic]
<class 'numpy.float32'>
A numpy
scalar type that corresponds to the type of input array expected by predictor
. This may be used to construct arrays of the given type to be passed through the predictor
. For most use cases this argument should have no effect, but it is exposed for use with predictors that would break when called with an array of unsupported type.
ohe
bool
False
Whether the categorical variables are one-hot encoded (OHE) or not. If not OHE, they are assumed to have ordinal encodings.
seed
Optional[int]
None
Used to set the random number generator for repeatability purposes.
Methods
explain
explain
explain(X: numpy.ndarray, threshold: float = 0.95, delta: float = 0.1, tau: float = 0.15, batch_size: int = 100, coverage_samples: int = 10000, beam_size: int = 1, stop_on_first: bool = False, max_anchor_size: Optional[int] = None, min_samples_start: int = 1, n_covered_ex: int = 10, binary_cache_size: int = 10000, cache_margin: int = 1000, verbose: bool = False, verbose_every: int = 1, kwargs: typing.Any) -> alibi.api.interfaces.Explanation
X
numpy.ndarray
threshold
float
0.95
delta
float
0.1
tau
float
0.15
batch_size
int
100
coverage_samples
int
10000
beam_size
int
1
stop_on_first
bool
False
max_anchor_size
Optional[int]
None
min_samples_start
int
1
n_covered_ex
int
10
binary_cache_size
int
10000
cache_margin
int
1000
verbose
bool
False
verbose_every
int
1
X,
threshold, delta, tau, batch_size, coverage_samples, beam_size, stop_on_first, max_anchor_size, min_samples_start, n_covered_ex, binary_cache_size, cache_margin, verbose, verbose_every, **kwargs
See :py:meth:alibi.explainers.anchors.anchor_tabular.AnchorTabular.explain
.
Returns
Type:
alibi.api.interfaces.Explanation
fit
fit
fit(train_data: numpy.ndarray, disc_perc: tuple = (25, 50, 75), kwargs) -> alibi.explainers.anchors.anchor_tabular.AnchorTabular
train_data
numpy.ndarray
disc_perc
tuple
(25, 50, 75)
train_data,
disc_perc, **kwargs
See :py:meth:alibi.explainers.anchors.anchor_tabular.AnchorTabular.fit
superclass.
Returns
Type:
alibi.explainers.anchors.anchor_tabular.AnchorTabular
reset_predictor
reset_predictor
reset_predictor(predictor: Callable) -> None
predictor
Callable
New model prediction function.
Returns
Type:
None
RemoteSampler
RemoteSampler
A wrapper that facilitates the use of TabularSampler
for distributed sampling.
Constructor
RemoteSampler(self, *args)
Methods
build_lookups
build_lookups
build_lookups(X: numpy.ndarray)
X
numpy.ndarray
See :py:meth:alibi.explainers.anchors.anchor_tabular.TabularSampler.build_lookups
.
set_instance_label
set_instance_label
set_instance_label(X: numpy.ndarray) -> int
X
numpy.ndarray
The instance to be explained.
Returns
Type:
int
set_n_covered
set_n_covered
set_n_covered(n_covered: int) -> None
n_covered
int
Number of examples where the result (and partial anchors) apply.
Returns
Type:
None
Last updated
Was this helpful?