alibi.explainers.anchors.anchor_explanation
AnchorExplanation
AnchorExplanation
Constructor
AnchorExplanation(self, exp_type: str, exp_map: dict) -> None
exp_type
str
Type of explainer: tabular, text or image.
exp_map
dict
Dictionary with the anchors and explainer metadata for an observation.
Methods
coverage
coverage
coverage(partial_index: Optional[int] = None) -> float
partial_index
Optional[int]
None
Get the result coverage until a certain index. For example, if the result has precisions [0.1, 0.5, 0.95]
and partial_index=1
, this will return 0.5
.
Returns
Type:
float
examples
examples
examples(only_different_prediction: bool = False, only_same_prediction: bool = False, partial_index: Optional[int] = None) -> Union[list, numpy.ndarray]
only_different_prediction
bool
False
If True
, will only return examples where the result makes a different prediction than the original model.
only_same_prediction
bool
False
If True
, will only return examples where the result makes the same prediction than the original model.
partial_index
Optional[int]
None
Get the examples from the partial result until a certain index.
Returns
Type:
Union[list, numpy.ndarray]
features
features
features(partial_index: Optional[int] = None) -> list
partial_index
Optional[int]
None
Get the result until a certain index. For example, if the result uses segment_labels=(1, 2, 3)
and partial_index=1
, this will return [1, 2]
.
Returns
Type:
list
names
names
names(partial_index: Optional[int] = None) -> list
partial_index
Optional[int]
None
Get the result until a certain index. For example, if the result is (A=1, B=2, C=2)
and partial_index=1
, this will return ["A=1", "B=2"]
.
Returns
Type:
list
precision
precision
precision(partial_index: Optional[int] = None) -> float
partial_index
Optional[int]
None
Get the result precision until a certain index. For example, if the result has precisions [0.1, 0.5, 0.95]
and partial_index=1
, this will return 0.5
.
Returns
Type:
float
Last updated
Was this helpful?