alibi_detect.models.tensorflow.gmm
Functions
gmm_energy
gmm_energygmm_energy(z: tensorflow.python.framework.tensor.Tensor, phi: tensorflow.python.framework.tensor.Tensor, mu: tensorflow.python.framework.tensor.Tensor, cov: tensorflow.python.framework.tensor.Tensor, L: tensorflow.python.framework.tensor.Tensor, log_det_cov: tensorflow.python.framework.tensor.Tensor, return_mean: bool = True) -> Tuple[tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor]Compute sample energy from Gaussian Mixture Model.
z
tensorflow.python.framework.tensor.Tensor
Observations.
phi
tensorflow.python.framework.tensor.Tensor
Mixture component distribution weights.
mu
tensorflow.python.framework.tensor.Tensor
Mixture means.
cov
tensorflow.python.framework.tensor.Tensor
Mixture covariance.
L
tensorflow.python.framework.tensor.Tensor
Cholesky decomposition of cov.
log_det_cov
tensorflow.python.framework.tensor.Tensor
Log of the determinant of cov.
return_mean
bool
True
Take mean across all sample energies in a batch.
Returns
Type:
Tuple[tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor]
gmm_params
gmm_paramsgmm_params(z: tensorflow.python.framework.tensor.Tensor, gamma: tensorflow.python.framework.tensor.Tensor) -> Tuple[tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor]Compute parameters of Gaussian Mixture Model.
z
tensorflow.python.framework.tensor.Tensor
Observations.
gamma
tensorflow.python.framework.tensor.Tensor
Mixture probabilities to derive mixture distribution weights from.
Returns
Type:
Tuple[tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor]
Last updated
Was this helpful?

