alibi_detect.models.tensorflow.embedding
TransformerEmbedding
TransformerEmbeddingInherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable
Constructor
TransformerEmbedding(self, model_name_or_path: str, embedding_type: str, layers: List[int] = None) -> Nonemodel_name_or_path
str
Name of or path to the model.
embedding_type
str
Type of embedding to extract. Needs to be one of pooler_output, last_hidden_state, hidden_state or hidden_state_cls.
layers
Optional[List[int]]
None
If "hidden_state" or "hidden_state_cls" is used as embedding type, layers has to be a list with int's referring to the hidden layers used to extract the embedding.
From
Last
(classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence. - last_hidden_state Sequence of hidden-states at the output of the last layer of the model. - hidden_state Hidden states of the model at the output of each layer. - hidden_state_cls See hidden_state but use the CLS token output.
Methods
call
callcall(tokens: Dict[str, tensorflow.python.framework.tensor.Tensor]) -> tensorflow.python.framework.tensor.Tensortokens
Dict[str, tensorflow.python.framework.tensor.Tensor]
Returns
Type:
tensorflow.python.framework.tensor.Tensor
Functions
hidden_state_embedding
hidden_state_embeddinghidden_state_embedding(hidden_states: tensorflow.python.framework.tensor.Tensor, layers: List[int], use_cls: bool, reduce_mean: bool = True) -> tensorflow.python.framework.tensor.TensorExtract embeddings from hidden attention state layers.
hidden_states
tensorflow.python.framework.tensor.Tensor
Attention hidden states in the transformer model.
layers
List[int]
List of layers to use for the embedding.
use_cls
bool
Whether to use the next sentence token (CLS) to extract the embeddings.
reduce_mean
bool
True
Whether to take the mean of the output tensor.
Returns
Type:
tensorflow.python.framework.tensor.Tensor
Last updated
Was this helpful?

