alibi_detect.ad.model_distillation
Constants
logger
loggerlogger: logging.Logger = <Logger alibi_detect.ad.model_distillation (WARNING)>Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.
ModelDistillation
ModelDistillationInherits from: BaseDetector, FitMixin, ThresholdMixin, ABC
Constructor
ModelDistillation(self, threshold: float = None, distilled_model: keras.src.models.model.Model = None, model: keras.src.models.model.Model = None, loss_type: str = 'kld', temperature: float = 1.0, data_type: str = None) -> Nonethreshold
Optional[float]
None
Threshold used for score to determine adversarial instances.
distilled_model
Optional[keras.src.models.model.Model]
None
A tf.keras model to distill.
model
Optional[keras.src.models.model.Model]
None
A trained tf.keras classification model.
loss_type
str
'kld'
Loss for distillation. Supported: 'kld', 'xent'
temperature
float
1.0
Temperature used for model prediction scaling. Temperature <1 sharpens the prediction probability distribution.
data_type
Optional[str]
None
Optionally specifiy the data type (tabular, image or time-series). Added to metadata.
Methods
fit
fitfit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function loss_distillation at 0x28ee8c4c0>, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, epochs: int = 20, batch_size: int = 128, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None, preprocess_fn: Callable = None) -> NoneTrain ModelDistillation detector.
X
numpy.ndarray
Training batch.
loss_fn
.tensorflow.keras.losses
<function loss_distillation at 0x28ee8c4c0>
Loss function used for training.
optimizer
Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]
<class 'keras.src.optimizers.adam.Adam'>
Optimizer used for training.
epochs
int
20
Number of training epochs.
batch_size
int
128
Batch size used for training.
verbose
bool
True
Whether to print training progress.
log_metric
Tuple[str, ForwardRef('tf.keras.metrics')]
None
Additional metrics whose progress will be displayed if verbose equals True.
callbacks
.tensorflow.keras.callbacks
None
Callbacks used during training.
preprocess_fn
Callable
None
Preprocessing function applied to each training batch.
Returns
Type:
None
infer_threshold
infer_thresholdinfer_threshold(X: numpy.ndarray, threshold_perc: float = 99.0, margin: float = 0.0, batch_size: int = 10000000000) -> NoneUpdate threshold by a value inferred from the percentage of instances considered to be
adversarial in a sample of the dataset.
X
numpy.ndarray
Batch of instances.
threshold_perc
float
99.0
Percentage of X considered to be normal based on the adversarial score.
margin
float
0.0
Add margin to threshold. Useful if adversarial instances have significantly higher scores and there is no adversarial instance in X.
batch_size
int
10000000000
Batch size used when computing scores.
Returns
Type:
None
predict
predictpredict(X: numpy.ndarray, batch_size: int = 10000000000, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[str, numpy.ndarray]]Predict whether instances are adversarial instances or not.
X
numpy.ndarray
Batch of instances.
batch_size
int
10000000000
Batch size used when computing scores.
return_instance_score
bool
True
Whether to return instance level adversarial scores.
Returns
Type:
Dict[Dict[str, str], Dict[str, numpy.ndarray]]
score
scorescore(X: numpy.ndarray, batch_size: int = 10000000000, return_predictions: bool = False) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]Compute adversarial scores.
X
numpy.ndarray
Batch of instances to analyze.
batch_size
int
10000000000
Batch size used when computing scores.
return_predictions
bool
False
Whether to return the predictions of the classifier on the original and reconstructed instances.
Returns
Type:
Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Last updated
Was this helpful?

