alibi_detect.ad.model_distillation

Constants

logger

logger: logging.Logger = <Logger alibi_detect.ad.model_distillation (WARNING)>

Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.

ModelDistillation

Inherits from: BaseDetector, FitMixin, ThresholdMixin, ABC

Constructor

ModelDistillation(self, threshold: float = None, distilled_model: keras.src.models.model.Model = None, model: keras.src.models.model.Model = None, loss_type: str = 'kld', temperature: float = 1.0, data_type: str = None) -> None
Name
Type
Default
Description

threshold

Optional[float]

None

Threshold used for score to determine adversarial instances.

distilled_model

Optional[keras.src.models.model.Model]

None

A tf.keras model to distill.

model

Optional[keras.src.models.model.Model]

None

A trained tf.keras classification model.

loss_type

str

'kld'

Loss for distillation. Supported: 'kld', 'xent'

temperature

float

1.0

Temperature used for model prediction scaling. Temperature <1 sharpens the prediction probability distribution.

data_type

Optional[str]

None

Optionally specifiy the data type (tabular, image or time-series). Added to metadata.

Methods

fit

fit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function loss_distillation at 0x28ee8c4c0>, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, epochs: int = 20, batch_size: int = 128, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None, preprocess_fn: Callable = None) -> None

Train ModelDistillation detector.

Name
Type
Default
Description

X

numpy.ndarray

Training batch.

loss_fn

.tensorflow.keras.losses

<function loss_distillation at 0x28ee8c4c0>

Loss function used for training.

optimizer

Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]

<class 'keras.src.optimizers.adam.Adam'>

Optimizer used for training.

epochs

int

20

Number of training epochs.

batch_size

int

128

Batch size used for training.

verbose

bool

True

Whether to print training progress.

log_metric

Tuple[str, ForwardRef('tf.keras.metrics')]

None

Additional metrics whose progress will be displayed if verbose equals True.

callbacks

.tensorflow.keras.callbacks

None

Callbacks used during training.

preprocess_fn

Callable

None

Preprocessing function applied to each training batch.

Returns

  • Type: None

infer_threshold

infer_threshold(X: numpy.ndarray, threshold_perc: float = 99.0, margin: float = 0.0, batch_size: int = 10000000000) -> None

Update threshold by a value inferred from the percentage of instances considered to be

adversarial in a sample of the dataset.

Name
Type
Default
Description

X

numpy.ndarray

Batch of instances.

threshold_perc

float

99.0

Percentage of X considered to be normal based on the adversarial score.

margin

float

0.0

Add margin to threshold. Useful if adversarial instances have significantly higher scores and there is no adversarial instance in X.

batch_size

int

10000000000

Batch size used when computing scores.

Returns

  • Type: None

predict

predict(X: numpy.ndarray, batch_size: int = 10000000000, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[str, numpy.ndarray]]

Predict whether instances are adversarial instances or not.

Name
Type
Default
Description

X

numpy.ndarray

Batch of instances.

batch_size

int

10000000000

Batch size used when computing scores.

return_instance_score

bool

True

Whether to return instance level adversarial scores.

Returns

  • Type: Dict[Dict[str, str], Dict[str, numpy.ndarray]]

score

score(X: numpy.ndarray, batch_size: int = 10000000000, return_predictions: bool = False) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Compute adversarial scores.

Name
Type
Default
Description

X

numpy.ndarray

Batch of instances to analyze.

batch_size

int

10000000000

Batch size used when computing scores.

return_predictions

bool

False

Whether to return the predictions of the classifier on the original and reconstructed instances.

Returns

  • Type: Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Last updated

Was this helpful?