alibi_detect.ad.adversarialae
Constants
logger
loggerlogger: logging.Logger = <Logger alibi_detect.ad.adversarialae (WARNING)>Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an application. Exactly how an "area" is defined is up to the application developer. Since an application can have any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g. an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are separated by periods, much like the Java or Python package namespace. So in the instance given above, channel names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There is no arbitrary limit to the depth of nesting.
AdversarialAE
AdversarialAEInherits from: BaseDetector, FitMixin, ThresholdMixin, ABC
Constructor
AdversarialAE(self, threshold: float = None, ae: keras.src.models.model.Model = None, model: keras.src.models.model.Model = None, encoder_net: keras.src.models.model.Model = None, decoder_net: keras.src.models.model.Model = None, model_hl: List[keras.src.models.model.Model] = None, hidden_layer_kld: dict = None, w_model_hl: list = None, temperature: float = 1.0, data_type: str = None) -> Nonethreshold
Optional[float]
None
Threshold used for adversarial score to determine adversarial instances.
ae
Optional[keras.src.models.model.Model]
None
A trained tf.keras autoencoder model if available.
model
Optional[keras.src.models.model.Model]
None
A trained tf.keras classification model.
encoder_net
Optional[keras.src.models.model.Model]
None
Layers for the encoder wrapped in a tf.keras.Sequential class if no 'ae' is specified.
decoder_net
Optional[keras.src.models.model.Model]
None
Layers for the decoder wrapped in a tf.keras.Sequential class if no 'ae' is specified.
model_hl
Optional[List[keras.src.models.model.Model]]
None
List with tf.keras models for the hidden layer K-L divergence computation.
hidden_layer_kld
Optional[dict]
None
Dictionary with as keys the hidden layer(s) of the model which are extracted and used during training of the AE, and as values the output dimension for the hidden layer.
w_model_hl
Optional[list]
None
Weights assigned to the loss of each model in model_hl.
temperature
float
1.0
Temperature used for model prediction scaling. Temperature <1 sharpens the prediction probability distribution.
data_type
Optional[str]
None
Optionally specifiy the data type (tabular, image or time-series). Added to metadata.
Methods
correct
correctcorrect(X: numpy.ndarray, batch_size: int = 10000000000, return_instance_score: bool = True, return_all_predictions: bool = True) -> Dict[Dict[str, str], Dict[str, numpy.ndarray]]Correct adversarial instances if the adversarial score is above the threshold.
X
numpy.ndarray
Batch of instances.
batch_size
int
10000000000
Batch size used when computing scores.
return_instance_score
bool
True
Whether to return instance level adversarial scores.
return_all_predictions
bool
True
Whether to return the predictions on the original and the reconstructed data.
Returns
Type:
Dict[Dict[str, str], Dict[str, numpy.ndarray]]
fit
fitfit(X: numpy.ndarray, loss_fn: .tensorflow.keras.losses = <function loss_adv_ae at 0x28ee8c430>, w_model: float = 1.0, w_recon: float = 0.0, optimizer: Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]] = <class 'keras.src.optimizers.adam.Adam'>, epochs: int = 20, batch_size: int = 128, verbose: bool = True, log_metric: Tuple[str, ForwardRef('tf.keras.metrics')] = None, callbacks: .tensorflow.keras.callbacks = None, preprocess_fn: Callable = None) -> NoneTrain Adversarial AE model.
X
numpy.ndarray
Training batch.
loss_fn
.tensorflow.keras.losses
<function loss_adv_ae at 0x28ee8c430>
Loss function used for training.
w_model
float
1.0
Weight on model prediction loss term.
w_recon
float
0.0
Weight on MSE reconstruction error loss term.
optimizer
Union[ForwardRef('tf.keras.optimizers.Optimizer'), ForwardRef('tf.keras.optimizers.legacy.Optimizer'), type[ForwardRef('tf.keras.optimizers.Optimizer')], type[ForwardRef('tf.keras.optimizers.legacy.Optimizer')]]
<class 'keras.src.optimizers.adam.Adam'>
Optimizer used for training.
epochs
int
20
Number of training epochs.
batch_size
int
128
Batch size used for training.
verbose
bool
True
Whether to print training progress.
log_metric
Tuple[str, ForwardRef('tf.keras.metrics')]
None
Additional metrics whose progress will be displayed if verbose equals True.
callbacks
.tensorflow.keras.callbacks
None
Callbacks used during training.
preprocess_fn
Callable
None
Preprocessing function applied to each training batch.
Returns
Type:
None
infer_threshold
infer_thresholdinfer_threshold(X: numpy.ndarray, threshold_perc: float = 99.0, margin: float = 0.0, batch_size: int = 10000000000) -> NoneUpdate threshold by a value inferred from the percentage of instances considered to be
adversarial in a sample of the dataset.
X
numpy.ndarray
Batch of instances.
threshold_perc
float
99.0
Percentage of X considered to be normal based on the adversarial score.
margin
float
0.0
Add margin to threshold. Useful if adversarial instances have significantly higher scores and there is no adversarial instance in X.
batch_size
int
10000000000
Batch size used when computing scores.
Returns
Type:
None
predict
predictpredict(X: numpy.ndarray, batch_size: int = 10000000000, return_instance_score: bool = True) -> Dict[Dict[str, str], Dict[str, numpy.ndarray]]Predict whether instances are adversarial instances or not.
X
numpy.ndarray
Batch of instances.
batch_size
int
10000000000
Batch size used when computing scores.
return_instance_score
bool
True
Whether to return instance level adversarial scores.
Returns
Type:
Dict[Dict[str, str], Dict[str, numpy.ndarray]]
score
scorescore(X: numpy.ndarray, batch_size: int = 10000000000, return_predictions: bool = False) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]Compute adversarial scores.
X
numpy.ndarray
Batch of instances to analyze.
batch_size
int
10000000000
Batch size used when computing scores.
return_predictions
bool
False
Whether to return the predictions of the classifier on the original and reconstructed instances.
Returns
Type:
Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]]
DenseHidden
DenseHiddenInherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable
Constructor
DenseHidden(self, model: keras.src.models.model.Model, hidden_layer: int, output_dim: int, hidden_dim: int = None) -> Nonemodel
keras.src.models.model.Model
tf.keras classification model.
hidden_layer
int
Hidden layer from model where feature map is extracted from.
output_dim
int
Output dimension for softmax layer.
hidden_dim
Optional[int]
None
Dimension of optional additional dense layer.
Methods
call
callcall(x: tensorflow.python.framework.tensor.Tensor) -> tensorflow.python.framework.tensor.Tensorx
tensorflow.python.framework.tensor.Tensor
Returns
Type:
tensorflow.python.framework.tensor.Tensor
Last updated
Was this helpful?

