Kubernetes Server with PVC
import os
os.environ["NAMESPACE"] = "seldon-mesh"
MESH_IP=!kubectl get svc seldon-mesh -n ${NAMESPACE} -o jsonpath='{.status.loadBalancer.ingress[0].ip}'
MESH_IP=MESH_IP[0]
import os
os.environ['MESH_IP'] = MESH_IP
MESH_IP
'172.19.255.1'
Kind cluster setup
To run this example in Kind we need to start Kind with access to a local folder where are models are location. In this example we will use a folder in /tmp
and associate that with a path in the container.
!cat kind-config.yaml
apiVersion: kind.x-k8s.io/v1alpha4
kind: Cluster
nodes:
- role: control-plane
extraMounts:
- hostPath: /tmp/models
containerPath: /models
To start a Kind cluster with these settings using our ansible script you can run from the project root folder
ansible-playbook ansible/playbooks/kind-cluster.yaml -e kind_config_file=${PWD}/samples/examples/local-pvc/kind-config.yaml
Now you should finish the Seldon install following the docs.
Create the local folder we will use for our models and copy an example iris sklearn model to it.
!mkdir -p /tmp/models
!gsutil cp -r gs://seldon-models/mlserver/iris /tmp/models
Create Server with PVC
Here we create a storage class and associated persistent colume referencing the /models
folder where our models are stored.
!cat pvc.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-path-immediate
provisioner: rancher.io/local-path
reclaimPolicy: Delete
mountOptions:
- debug
volumeBindingMode: Immediate
---
kind: PersistentVolume
apiVersion: v1
metadata:
name: ml-models-pv
namespace: seldon-mesh
labels:
type: local
spec:
storageClassName: local-path-immediate
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/models"
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: ml-models-pvc
namespace: seldon-mesh
spec:
storageClassName: local-path-immediate
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
selector:
matchLabels:
type: local
Now we create a new Server based on the provided MLServer configuration but extend it with our PVC by adding this to the rclone container which will allow rclone to move models from this PVC onto the server.
We also add a new capability pvc
to allow us to schedule models to this server that has the PVC.
!cat server.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Server
metadata:
name: mlserver-pvc
spec:
serverConfig: mlserver
extraCapabilities:
- "pvc"
podSpec:
volumes:
- name: models-pvc
persistentVolumeClaim:
claimName: ml-models-pvc
containers:
- name: rclone
volumeMounts:
- name: models-pvc
mountPath: /var/models
SKLearn Model
We use a simple sklearn iris classification model with the added pvc
requirement so our MLServer with the PVC will be targeted during scheduling.
!cat ./iris.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
name: iris
spec:
storageUri: "/var/models/iris"
requirements:
- sklearn
- pvc
!kubectl create -f iris.yaml -n ${NAMESPACE}
model.mlops.seldon.io/iris created
!kubectl wait --for condition=ready --timeout=300s model --all -n ${NAMESPACE}
model.mlops.seldon.io/iris condition met
!kubectl get model iris -n ${NAMESPACE} -o jsonpath='{.status}' | jq -M .
{
"conditions": [
{
"lastTransitionTime": "2022-12-24T11:04:37Z",
"status": "True",
"type": "ModelReady"
},
{
"lastTransitionTime": "2022-12-24T11:04:37Z",
"status": "True",
"type": "Ready"
}
],
"replicas": 1
}
!seldon model infer iris --inference-host ${MESH_IP}:80 \
'{"inputs": [{"name": "predict", "shape": [1, 4], "datatype": "FP32", "data": [[1, 2, 3, 4]]}]}'
{
"model_name": "iris_1",
"model_version": "1",
"id": "dc032bcc-3f4e-4395-a2e4-7c1e3ef56e9e",
"parameters": {
"content_type": null,
"headers": null
},
"outputs": [
{
"name": "predict",
"shape": [
1,
1
],
"datatype": "INT64",
"parameters": null,
"data": [
2
]
}
]
}
Do a gRPC inference call
!seldon model infer iris --inference-mode grpc --inference-host ${MESH_IP}:80 \
'{"model_name":"iris","inputs":[{"name":"input","contents":{"fp32_contents":[1,2,3,4]},"datatype":"FP32","shape":[1,4]}]}' | jq -M .
{
"modelName": "iris_1",
"modelVersion": "1",
"outputs": [
{
"name": "predict",
"datatype": "INT64",
"shape": [
"1",
"1"
],
"contents": {
"int64Contents": [
"2"
]
}
}
]
}
!kubectl delete -f ./iris.yaml -n ${NAMESPACE}
model.mlops.seldon.io "iris" deleted
Last updated
Was this helpful?