Self-hosted Kafka

Learn how to set up a self-hosted Kafka cluster for Seldon Core in development and learning environments.

You can run Kafka in the same Kubernetes cluster that hosts the Seldon Core 2. Seldon recommends using the Strimzi operator for Kafka installation and maintenance. For more details about configuring Kafka with Seldon Core 2 see the Configuration section.

Note: These instructions help you quickly set up a Kafka cluster. For production grade installation consult Strimzi documentation or use one of managed solutions.

Integrating self-hosted Kafka with Seldon Core 2 includes these steps:

Installing Kafka in a Kubernetes cluster

Strimzi provides a Kubernetes Operator to deploy and manage Kafka clusters. First, we need to install the Strimzi Operator in your Kubernetes cluster.

  1. Create a namespace where you want to install Kafka. For example the namespace seldon-mesh:

    kubectl create namespace seldon-mesh || echo "namespace seldon-mesh exists"
  2. Install Strimzi.

    helm repo add strimzi https://strimzi.io/charts/
    helm repo update
  3. Install Strimzi Operator.

    helm install strimzi-kafka-operator strimzi/strimzi-kafka-operator --namespace seldon-mesh

    This deploys the Strimzi Operator in the seldon-mesh namespace. After the Strimzi Operator is running, you can create a Kafka cluster by applying a Kafka custom resource definition.

  4. Create a YAML file to specify the initial configuration.

    Note: This configuration sets up a Kafka cluster with version 3.9.0. Ensure that you review the the supported versions of Kafka and update the version in the kafka.yaml file as needed. For more configuration examples, see this strimzi-kafka-operator.

    Use your preferred text editor to create and save the file as kafka.yaml with the following content:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: seldon
  namespace: seldon-mesh
  annotations:
    strimzi.io/node-pools: enabled
    strimzi.io/kraft: enabled
spec:
  kafka:
    replicas: 3
    version: 3.9.0
    listeners:
      - name: plain
        port: 9092
        tls: false
        type: internal
      - name: tls
        port: 9093
        tls: true
        type: internal
    config:
      processMode: kraft
      auto.create.topics.enable: true
      default.replication.factor: 1
      inter.broker.protocol.version: 3.7
      min.insync.replicas: 1
      offsets.topic.replication.factor: 1
      transaction.state.log.min.isr: 1
      transaction.state.log.replication.factor: 1
  entityOperator: null
  1. Apply the Kafka cluster configuration.

    kubectl apply -f kafka.yaml -n seldon-mesh
  2. Create a YAML file named kafka-nodepool.yaml to create a nodepool for the kafka cluster.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
  name: kafka
  namespace: seldon-mesh
  labels:
    strimzi.io/cluster: seldon
spec:
  replicas: 3
  roles:
    - broker
    - controller
  resources:
    requests:
      cpu: '500m'
      memory: '2Gi'
    limits:
      memory: '2Gi'
  template:
    pod:
      tmpDirSizeLimit: 1Gi
  storage:
    type: jbod
    volumes:
      - id: 0
        type: ephemeral
        sizeLimit: 500Mi
        kraftMetadata: shared
      - id: 1
        type: persistent-claim
        size: 10Gi
        deleteClaim: false
  1. Apply the Kafka node pool configuration.

    kubectl apply -f kafka-nodepool.yaml -n seldon-mesh
  2. Check the status of the Kafka Pods to ensure they are running properly:

    kubectl get pods -n seldon-mesh

Note: It might take a couple of minutes for all the Pods to be ready. To check the status of the Pods in real time use this command: kubectl get pods -w -n seldon-mesh.

You should see multiple Pods for Kafka, and Strimzi operators running.

```bash
NAME                                            READY   STATUS    RESTARTS      AGE
hodometer-5489f768bf-9xnmd                      1/1     Running   0             25m
mlserver-0                                      3/3     Running   0             24m
seldon-dataflow-engine-75f9bf6d8f-2blgt         1/1     Running   5 (23m ago)   25m
seldon-envoy-7c764cc88-xg24l                    1/1     Running   0             25m
seldon-kafka-0                                  1/1     Running   0             21m
seldon-kafka-1                                  1/1     Running   0             21m
seldon-kafka-2                                  1/1     Running   0             21m
seldon-modelgateway-54d457794-x4nzq             1/1     Running   0             25m
seldon-pipelinegateway-6957c5f9dc-6blx6         1/1     Running   0             25m
seldon-scheduler-0                              1/1     Running   0             25m
seldon-v2-controller-manager-7b5df98677-4jbpp   1/1     Running   0             25m
strimzi-cluster-operator-66b5ff8bbb-qnr4l       1/1     Running   0             23m
triton-0                                        3/3     Running   0             24m
```

Troubleshooting

Error The Pod that begins with the name seldon-dataflow-engine does not show the status as Running.

One of the possible reasons could be that the DNS resolution for the service failed.

Solution

  1. Check the logs of the Pod <seldon-dataflow-engine>:

    kubectl logs <seldon-dataflow-engine> -n seldon-mesh
  2. In the output check if a message reads:

    WARN [main] org.apache.kafka.clients.ClientUtils : Couldn't resolve server seldon-kafka-bootstrap.seldon-mesh:9092 from bootstrap.servers as DNS resolution failed for seldon-kafka-bootstrap.seldon-mesh
  3. Verify the name in the metadata for the kafka.yaml and kafka-nodepool.yaml. It should read seldon.

  4. Check the name of the Kafka services in the namespace:

    kubectl get svc -n seldon-mesh
  5. Restart the Pod:

    kubectl delete pod <seldon-dataflow-engine> -n seldon-mesh 

Configuring Seldon Core 2

When the SeldonRuntime is installed in a namespace a ConfigMap is created with the settings for Kafka configuration. Update the ConfigMap only if you need to customize the configurations.

Unexpected error with integration github-files: Integration is not installed on this space
  1. Verify that the ConfigMap resource named seldon-kafka that is created in the namespace seldon-mesh:

    kubectl get configmaps -n seldon-mesh

    You should the ConfigMaps for Kafka, Zookeeper, Strimzi operators, and others.

    NAME                       DATA   AGE
    kube-root-ca.crt           1      38m
    seldon-agent               1      30m
    seldon-kafka               1      30m
    seldon-kafka-0             6      26m
    seldon-kafka-1             6      26m
    seldon-kafka-2             6      26m
    seldon-manager-config      1      30m
    seldon-tracing             4      30m
    strimzi-cluster-operator   1      28m
  2. View the configuration of the the ConfigMap named seldon-kafka.

    kubectl get configmap seldon-kafka -n seldon-mesh -o yaml

    You should see an output simialr to this:

    apiVersion: v1
    data:
      kafka.json: '{"bootstrap.servers":"seldon-kafka-bootstrap.seldon-mesh:9092","consumer":{"auto.offset.reset":"earliest","message.max.bytes":"1000000000","session.timeout.ms":"6000","topic.metadata.propagation.max.ms":"300000"},"producer":{"linger.ms":"0","message.max.bytes":"1000000000"},"topicPrefix":"seldon"}'
    kind: ConfigMap
    metadata:
      creationTimestamp: "2024-12-05T07:12:57Z"
      name: seldon-kafka
      namespace: seldon-mesh
      ownerReferences:
      - apiVersion: mlops.seldon.io/v1alpha1
        blockOwnerDeletion: true
        controller: true
        kind: SeldonRuntime
        name: seldon
        uid: 9e724536-2487-487b-9250-8bcd57fc52bb
      resourceVersion: "778"
      uid: 5c041e69-f36b-4f14-8f0d-c8790003cb3e

After you integrated Seldon Core 2 with Kafka, you need to Install an Ingress Controller that adds an abstraction layer for traffic routing by receiving traffic from outside the Kubernetes platform and load balancing it to Pods running within the Kubernetes cluster.

Customizing the settings (optional)

To customize the settings you can add and modify the Kafka configuration using Helm, for example to add compression for producers.

  1. Create a YAML file to specify the compression configuration for Seldon Core 2 runtime. For example, create the values-runtime-kafka-compression.yaml file. Use your preferred text editor to create and save the file with the following content:

Unexpected error with integration github-files: Integration is not installed on this space
  1. Change to the directory that contains the values-runtime-kafka-compression.yaml file and then install Seldon Core 2 runtime in the namespace seldon-mesh.

helm upgrade seldon-core-v2-runtime seldon-charts/seldon-core-v2-runtime \
--namespace seldon-mesh \
-f values-runtime-kafka-compression.yaml \
--install

Configuring topic and consumer isolation (optional)

If you are using a shared Kafka cluster with other applications, it is advisable to isolate topic names and consumer group IDs from other cluster users to prevent naming conflicts. This can be achieved by configuring the following two settings:

  • topicPrefix: set a prefix for all topics

  • consumerGroupIdPrefix: set a prefix for all consumer groups

Here's an example of how to configure topic name and consumer group ID isolation during a Helm installation for an application named myorg:

helm upgrade --install seldon-core-v2-setup seldon-charts/seldon-core-v2-setup \
--namespace seldon-mesh \
--set controller.clusterwide=true \
--set kafka.topicPrefix=myorg \
--set kafka.consumerGroupIdPrefix=myorg

Next Steps

After you installed Seldon Core 2, and Kafka using Helm, you need to complete Installing a Service mesh.

Last updated

Was this helpful?