Self-hosted Kafka
Learn how to set up a self-hosted Kafka cluster for Seldon Core in development and learning environments.
You can run Kafka in the same Kubernetes cluster that hosts the Seldon Core 2. Seldon recommends using the Strimzi operator for Kafka installation and maintenance. For more details about configuring Kafka with Seldon Core 2 see the Configuration section.
Integrating self-hosted Kafka with Seldon Core 2 includes these steps:
Installing Kafka in a Kubernetes cluster
Strimzi provides a Kubernetes Operator to deploy and manage Kafka clusters. First, we need to install the Strimzi Operator in your Kubernetes cluster.
Create a namespace where you want to install Kafka. For example the namespace
seldon-mesh
:kubectl create namespace seldon-mesh || echo "namespace seldon-mesh exists"
Install Strimzi.
helm repo add strimzi https://strimzi.io/charts/ helm repo update
Install Strimzi Operator.
helm install strimzi-kafka-operator strimzi/strimzi-kafka-operator --namespace seldon-mesh
This deploys the
Strimzi Operator
in theseldon-mesh
namespace. After the Strimzi Operator is running, you can create a Kafka cluster by applying a Kafka custom resource definition.Create a YAML file to specify the initial configuration.
Note: This configuration sets up a Kafka cluster with version 3.9.0. Ensure that you review the the supported versions of Kafka and update the version in the
kafka.yaml
file as needed. For more configuration examples, see this strimzi-kafka-operator.Use your preferred text editor to create and save the file as
kafka.yaml
with the following content:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: seldon
namespace: seldon-mesh
annotations:
strimzi.io/node-pools: enabled
strimzi.io/kraft: enabled
spec:
kafka:
replicas: 3
version: 3.9.0
listeners:
- name: plain
port: 9092
tls: false
type: internal
- name: tls
port: 9093
tls: true
type: internal
config:
processMode: kraft
auto.create.topics.enable: true
default.replication.factor: 1
inter.broker.protocol.version: 3.7
min.insync.replicas: 1
offsets.topic.replication.factor: 1
transaction.state.log.min.isr: 1
transaction.state.log.replication.factor: 1
entityOperator: null
Apply the Kafka cluster configuration.
kubectl apply -f kafka.yaml -n seldon-mesh
Create a YAML file named
kafka-nodepool.yaml
to create a nodepool for the kafka cluster.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
name: kafka
namespace: seldon-mesh
labels:
strimzi.io/cluster: seldon
spec:
replicas: 3
roles:
- broker
- controller
resources:
requests:
cpu: '500m'
memory: '2Gi'
limits:
memory: '2Gi'
template:
pod:
tmpDirSizeLimit: 1Gi
storage:
type: jbod
volumes:
- id: 0
type: ephemeral
sizeLimit: 500Mi
kraftMetadata: shared
- id: 1
type: persistent-claim
size: 10Gi
deleteClaim: false
Apply the Kafka node pool configuration.
kubectl apply -f kafka-nodepool.yaml -n seldon-mesh
Check the status of the Kafka Pods to ensure they are running properly:
kubectl get pods -n seldon-mesh
You should see multiple Pods for Kafka, and Strimzi operators running.
```bash
NAME READY STATUS RESTARTS AGE
hodometer-5489f768bf-9xnmd 1/1 Running 0 25m
mlserver-0 3/3 Running 0 24m
seldon-dataflow-engine-75f9bf6d8f-2blgt 1/1 Running 5 (23m ago) 25m
seldon-envoy-7c764cc88-xg24l 1/1 Running 0 25m
seldon-kafka-0 1/1 Running 0 21m
seldon-kafka-1 1/1 Running 0 21m
seldon-kafka-2 1/1 Running 0 21m
seldon-modelgateway-54d457794-x4nzq 1/1 Running 0 25m
seldon-pipelinegateway-6957c5f9dc-6blx6 1/1 Running 0 25m
seldon-scheduler-0 1/1 Running 0 25m
seldon-v2-controller-manager-7b5df98677-4jbpp 1/1 Running 0 25m
strimzi-cluster-operator-66b5ff8bbb-qnr4l 1/1 Running 0 23m
triton-0 3/3 Running 0 24m
```
Troubleshooting
Error The Pod that begins with the name seldon-dataflow-engine
does not show the status as Running
.
One of the possible reasons could be that the DNS resolution for the service failed.
Solution
Check the logs of the Pod
<seldon-dataflow-engine>
:kubectl logs <seldon-dataflow-engine> -n seldon-mesh
In the output check if a message reads:
WARN [main] org.apache.kafka.clients.ClientUtils : Couldn't resolve server seldon-kafka-bootstrap.seldon-mesh:9092 from bootstrap.servers as DNS resolution failed for seldon-kafka-bootstrap.seldon-mesh
Verify the
name
in themetadata
for thekafka.yaml
andkafka-nodepool.yaml
. It should readseldon
.Check the name of the Kafka services in the namespace:
kubectl get svc -n seldon-mesh
Restart the Pod:
kubectl delete pod <seldon-dataflow-engine> -n seldon-mesh
Configuring Seldon Core 2
When the SeldonRuntime
is installed in a namespace a ConfigMap is created with the settings for Kafka configuration. Update the ConfigMap
only if you need to customize the configurations.
Unexpected error with integration github-files: Integration is not installed on this space
Verify that the ConfigMap resource named
seldon-kafka
that is created in the namespaceseldon-mesh
:kubectl get configmaps -n seldon-mesh
You should the ConfigMaps for Kafka, Zookeeper, Strimzi operators, and others.
NAME DATA AGE kube-root-ca.crt 1 38m seldon-agent 1 30m seldon-kafka 1 30m seldon-kafka-0 6 26m seldon-kafka-1 6 26m seldon-kafka-2 6 26m seldon-manager-config 1 30m seldon-tracing 4 30m strimzi-cluster-operator 1 28m
View the configuration of the the ConfigMap named
seldon-kafka
.kubectl get configmap seldon-kafka -n seldon-mesh -o yaml
You should see an output simialr to this:
apiVersion: v1 data: kafka.json: '{"bootstrap.servers":"seldon-kafka-bootstrap.seldon-mesh:9092","consumer":{"auto.offset.reset":"earliest","message.max.bytes":"1000000000","session.timeout.ms":"6000","topic.metadata.propagation.max.ms":"300000"},"producer":{"linger.ms":"0","message.max.bytes":"1000000000"},"topicPrefix":"seldon"}' kind: ConfigMap metadata: creationTimestamp: "2024-12-05T07:12:57Z" name: seldon-kafka namespace: seldon-mesh ownerReferences: - apiVersion: mlops.seldon.io/v1alpha1 blockOwnerDeletion: true controller: true kind: SeldonRuntime name: seldon uid: 9e724536-2487-487b-9250-8bcd57fc52bb resourceVersion: "778" uid: 5c041e69-f36b-4f14-8f0d-c8790003cb3e
After you integrated Seldon Core 2 with Kafka, you need to Install an Ingress Controller that adds an abstraction layer for traffic routing by receiving traffic from outside the Kubernetes platform and load balancing it to Pods running within the Kubernetes cluster.
Customizing the settings (optional)
To customize the settings you can add and modify the Kafka configuration using Helm, for example to add compression for producers.
Create a YAML file to specify the compression configuration for Seldon Core 2 runtime. For example, create the
values-runtime-kafka-compression.yaml
file. Use your preferred text editor to create and save the file with the following content:
Unexpected error with integration github-files: Integration is not installed on this space
Change to the directory that contains the
values-runtime-kafka-compression.yaml
file and then install Seldon Core 2 runtime in the namespaceseldon-mesh
.
helm upgrade seldon-core-v2-runtime seldon-charts/seldon-core-v2-runtime \
--namespace seldon-mesh \
-f values-runtime-kafka-compression.yaml \
--install
Configuring topic and consumer isolation (optional)
If you are using a shared Kafka cluster with other applications, it is advisable to isolate topic names and consumer group IDs from other cluster users to prevent naming conflicts. This can be achieved by configuring the following two settings:
topicPrefix
: set a prefix for all topicsconsumerGroupIdPrefix
: set a prefix for all consumer groups
Here's an example of how to configure topic name and consumer group ID isolation during a Helm installation for an application named myorg
:
helm upgrade --install seldon-core-v2-setup seldon-charts/seldon-core-v2-setup \
--namespace seldon-mesh \
--set controller.clusterwide=true \
--set kafka.topicPrefix=myorg \
--set kafka.consumerGroupIdPrefix=myorg
Next Steps
After you installed Seldon Core 2, and Kafka using Helm, you need to complete Installing a Service mesh.
Last updated
Was this helpful?