Checking Pipeline readiness

Local example settings.

%env INFER_REST_ENDPOINT=http://0.0.0.0:9000
%env INFER_GRPC_ENDPOINT=0.0.0.0:9000
%env SELDON_SCHEDULE_HOST=0.0.0.0:9004
env: INFER_REST_ENDPOINT=http://0.0.0.0:9000
env: INFER_GRPC_ENDPOINT=0.0.0.0:9000
env: SELDON_SCHEDULE_HOST=0.0.0.0:9004

Remote k8s cluster example settings - change as neeed for your needs.

#%env INFER_REST_ENDPOINT=http://172.19.255.1:80
#%env INFER_GRPC_ENDPOINT=172.19.255.1:80
#%env SELDON_SCHEDULE_HOST=172.19.255.2:9004

Model Chain - Ready Check

We will check the readiness of the Pipeline after every change to model and pipeline.

cat ./pipelines/tfsimples.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Pipeline
metadata:
  name: tfsimples
spec:
  steps:
    - name: tfsimple1
    - name: tfsimple2
      inputs:
      - tfsimple1
      tensorMap:
        tfsimple1.outputs.OUTPUT0: INPUT0
        tfsimple1.outputs.OUTPUT1: INPUT1
  output:
    steps:
    - tfsimple2

Models will still be ready even though Pipeline terminated

Kubernetes Resource Example

Note: The Seldon CLI allows you to view information about underlying Seldon resources and make changes to them through the scheduler in non-Kubernetes environments. However, it cannot modify underlying manifests within a Kubernetes cluster. Therefore, using the Seldon CLI for control plane operations in a Kubernetes environment is not recommended. For more details, see Seldon CLI.

Last updated

Was this helpful?