Conditional pipeline with pandas query model
The model is defined as an MLServer custom runtime and allows the user to pass in a custom pandas query as a parameter defined at model creation to be used to filter the data passed to the model.
from mlserver import MLModel
from mlserver.types import InferenceRequest, InferenceResponse
from mlserver.codecs import PandasCodec
from mlserver.errors import MLServerError
import pandas as pd
from fastapi import status
from mlserver.logging import logger
QUERY_KEY = "query"
class ModelParametersMissing(MLServerError):
def __init__(self, model_name: str, reason: str):
super().__init__(
f"Parameters missing for model {model_name} {reason}", status.HTTP_400_BAD_REQUEST
)
class PandasQueryRuntime(MLModel):
async def load(self) -> bool:
logger.info("Loading with settings %s", self.settings)
if self.settings.parameters is None or \
self.settings.parameters.extra is None:
raise ModelParametersMissing(self.name, "no settings.parameters.extra found")
self.query = self.settings.parameters.extra[QUERY_KEY]
if self.query is None:
raise ModelParametersMissing(self.name, "no settings.parameters.extra.query found")
self.ready = True
return self.ready
async def predict(self, payload: InferenceRequest) -> InferenceResponse:
input_df: pd.DataFrame = PandasCodec.decode_request(payload)
# run query on input_df and save in output_df
output_df = input_df.query(self.query)
if output_df.empty:
output_df = pd.DataFrame({'status':["no rows satisfied " + self.query]})
else:
output_df["status"] = "row satisfied " + self.query
return PandasCodec.encode_response(self.name, output_df, self.version)
Conditional Pipeline using PandasQuery
cat ../../models/choice1.yaml
echo "---"
cat ../../models/choice2.yaml
echo "---"
cat ../../models/add10.yaml
echo "---"
cat ../../models/mul10.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
name: choice-is-one
spec:
storageUri: "gs://seldon-models/scv2/examples/pandasquery"
requirements:
- mlserver
- python
parameters:
- name: query
value: "choice == 1"
---
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
name: choice-is-two
spec:
storageUri: "gs://seldon-models/scv2/examples/pandasquery"
requirements:
- mlserver
- python
parameters:
- name: query
value: "choice == 2"
---
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
name: add10
spec:
storageUri: "gs://seldon-models/scv2/samples/triton_23-03/add10"
requirements:
- triton
- python
---
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
name: mul10
spec:
storageUri: "gs://seldon-models/scv2/samples/triton_23-03/mul10"
requirements:
- triton
- python
seldon model load -f ../../models/choice1.yaml
seldon model load -f ../../models/choice2.yaml
seldon model load -f ../../models/add10.yaml
seldon model load -f ../../models/mul10.yaml
{}
{}
{}
{}
seldon model status choice-is-one -w ModelAvailable
seldon model status choice-is-two -w ModelAvailable
seldon model status add10 -w ModelAvailable
seldon model status mul10 -w ModelAvailable
{}
{}
{}
{}
cat ../../pipelines/choice.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Pipeline
metadata:
name: choice
spec:
steps:
- name: choice-is-one
- name: mul10
inputs:
- choice.inputs.INPUT
triggers:
- choice-is-one.outputs.choice
- name: choice-is-two
- name: add10
inputs:
- choice.inputs.INPUT
triggers:
- choice-is-two.outputs.choice
output:
steps:
- mul10
- add10
stepsJoin: any
seldon pipeline load -f ../../pipelines/choice.yaml
seldon pipeline status choice -w PipelineReady | jq -M .
{
"pipelineName": "choice",
"versions": [
{
"pipeline": {
"name": "choice",
"uid": "cifel9aufmbc73e5intg",
"version": 1,
"steps": [
{
"name": "add10",
"inputs": [
"choice.inputs.INPUT"
],
"triggers": [
"choice-is-two.outputs.choice"
]
},
{
"name": "choice-is-one"
},
{
"name": "choice-is-two"
},
{
"name": "mul10",
"inputs": [
"choice.inputs.INPUT"
],
"triggers": [
"choice-is-one.outputs.choice"
]
}
],
"output": {
"steps": [
"mul10.outputs",
"add10.outputs"
],
"stepsJoin": "ANY"
},
"kubernetesMeta": {}
},
"state": {
"pipelineVersion": 1,
"status": "PipelineReady",
"reason": "created pipeline",
"lastChangeTimestamp": "2023-06-30T14:45:57.284684328Z",
"modelsReady": true
}
}
]
}
seldon pipeline infer choice --inference-mode grpc \
'{"model_name":"choice","inputs":[{"name":"choice","contents":{"int_contents":[1]},"datatype":"INT32","shape":[1]},{"name":"INPUT","contents":{"fp32_contents":[5,6,7,8]},"datatype":"FP32","shape":[4]}]}' | jq -M .
{
"outputs": [
{
"name": "OUTPUT",
"datatype": "FP32",
"shape": [
"4"
],
"contents": {
"fp32Contents": [
50,
60,
70,
80
]
}
}
]
}
seldon pipeline infer choice --inference-mode grpc \
'{"model_name":"choice","inputs":[{"name":"choice","contents":{"int_contents":[2]},"datatype":"INT32","shape":[1]},{"name":"INPUT","contents":{"fp32_contents":[5,6,7,8]},"datatype":"FP32","shape":[4]}]}' | jq -M .
{
"outputs": [
{
"name": "OUTPUT",
"datatype": "FP32",
"shape": [
"4"
],
"contents": {
"fp32Contents": [
15,
16,
17,
18
]
}
}
]
}
seldon model unload choice-is-one
seldon model unload choice-is-two
seldon model unload add10
seldon model unload mul10
seldon pipeline unload choice
PreviousProduction income classifier with drift, outlier and explanationsNextKubernetes Server with PVC
Last updated