Production image classifier with drift and outlier monitoring

Run these examples from the samples/examples/image_classifier folder.

CIFAR10 Image Classification Production Deployment

cifar10

We show an image classifier (CIFAR10) with associated outlier and drift detectors using a Pipeline.

Model Training (optional for notebook)

To run local training run the training notebook.

import requests
import json
from typing import Dict, List
import numpy as np
import os
import tensorflow as tf
from alibi_detect.utils.perturbation import apply_mask
from alibi_detect.datasets import fetch_cifar10c
import matplotlib.pyplot as plt
tf.keras.backend.clear_session()
2023-06-30 15:39:28.732453: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-06-30 15:39:28.732465: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
train, test = tf.keras.datasets.cifar10.load_data()
X_train, y_train = train
X_test, y_test = test

X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
classes = (
    "plane",
    "car",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck",
)
(50000, 32, 32, 3) (50000, 1) (10000, 32, 32, 3) (10000, 1)
outliers = []
for idx in range(0,X_train.shape[0]):
    X_mask, mask = apply_mask(X_train[idx].reshape(1, 32, 32, 3),
                                  mask_size=(14,14),
                                  n_masks=1,
                                  channels=[0,1,2],
                                  mask_type='normal',
                                  noise_distr=(0,1),
                                  clip_rng=(0,1))
    outliers.append(X_mask)
X_outliers = np.vstack(outliers)
X_outliers.shape
(50000, 32, 32, 3)
corruption = ['brightness']
X_corr, y_corr = fetch_cifar10c(corruption=corruption, severity=5, return_X_y=True)
X_corr = X_corr.astype('float32') / 255
reqJson = json.loads('{"inputs":[{"name":"input_1","data":[],"datatype":"FP32","shape":[]}]}')
url = "http://0.0.0.0:9000/v2/models/model/infer"
def infer(resourceName: str, batchSz: int, requestType: str):
    if requestType == "outlier":
        rows = X_outliers[0:0+batchSz]
    elif requestType == "drift":
        rows = X_corr[0:0+batchSz]
    else:
        rows = X_train[0:0+batchSz]
    for i in range(batchSz):
        show(rows[i])
    reqJson["inputs"][0]["data"] = rows.flatten().tolist()
    reqJson["inputs"][0]["shape"] = [batchSz, 32, 32, 3]
    headers = {"Content-Type": "application/json", "seldon-model":resourceName}
    response_raw = requests.post(url, json=reqJson, headers=headers)
    print(response_raw)
    print(response_raw.json())


def show(X):
    plt.imshow(X.reshape(32, 32, 3))
    plt.axis("off")
    plt.show()

Pipeline

cat ../../models/cifar10.yaml
echo "---"
cat ../../models/cifar10-outlier-detect.yaml
echo "---"
cat ../../models/cifar10-drift-detect.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
  name: cifar10
spec:
  storageUri: "gs://seldon-models/triton/tf_cifar10"
  requirements:
  - tensorflow
---
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
  name: cifar10-outlier
spec:
  storageUri: "gs://seldon-models/scv2/examples/mlserver_1.3.5/cifar10/outlier-detector"
  requirements:
    - mlserver
    - alibi-detect
---
apiVersion: mlops.seldon.io/v1alpha1
kind: Model
metadata:
  name: cifar10-drift
spec:
  storageUri: "gs://seldon-models/scv2/examples/mlserver_1.3.5/cifar10/drift-detector"
  requirements:
    - mlserver
    - alibi-detect
seldon model load -f ../../models/cifar10.yaml
seldon model load -f ../../models/cifar10-outlier-detect.yaml
seldon model load -f ../../models/cifar10-drift-detect.yaml
{}
{}
{}
seldon model status cifar10 -w ModelAvailable | jq .
seldon model status cifar10-outlier -w ModelAvailable | jq .
seldon model status cifar10-drift -w ModelAvailable | jq .
{}
{}
{}
cat ../../pipelines/cifar10.yaml
apiVersion: mlops.seldon.io/v1alpha1
kind: Pipeline
metadata:
  name: cifar10-production
spec:
  steps:
    - name: cifar10
    - name: cifar10-outlier
    - name: cifar10-drift
      batch:
        size: 20
  output:
    steps:
    - cifar10
    - cifar10-outlier.outputs.is_outlier
seldon pipeline load -f ../../pipelines/cifar10.yaml
seldon pipeline status cifar10-production -w PipelineReady | jq -M .
{
  "pipelineName": "cifar10-production",
  "versions": [
    {
      "pipeline": {
        "name": "cifar10-production",
        "uid": "cifeii2ufmbc73e5insg",
        "version": 1,
        "steps": [
          {
            "name": "cifar10"
          },
          {
            "name": "cifar10-drift",
            "batch": {
              "size": 20
            }
          },
          {
            "name": "cifar10-outlier"
          }
        ],
        "output": {
          "steps": [
            "cifar10.outputs",
            "cifar10-outlier.outputs.is_outlier"
          ]
        },
        "kubernetesMeta": {}
      },
      "state": {
        "pipelineVersion": 1,
        "status": "PipelineReady",
        "reason": "created pipeline",
        "lastChangeTimestamp": "2023-06-30T14:40:09.047429817Z",
        "modelsReady": true
      }
    }
  ]
}
infer("cifar10-production.pipeline",20, "normal")
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
<Response [200]>
{'model_name': '', 'outputs': [{'data': [1.45001495e-08, 1.2525752e-09, 1.6298458e-07, 0.11529388, 1.7431412e-07, 6.1856604e-06, 0.8846994, 6.0739285e-09, 7.437921e-08, 4.7317337e-09, 1.26449e-06, 4.8814868e-09, 1.5153439e-09, 8.490656e-09, 5.5131194e-10, 1.1617216e-09, 5.7729294e-10, 2.8839776e-07, 0.0006149016, 0.99938357, 0.888746, 2.5331951e-06, 0.00012967695, 0.10531583, 2.4284174e-05, 6.3332986e-06, 0.0016261435, 1.13079e-05, 0.0013286703, 0.0028091935, 2.0993439e-06, 3.680449e-08, 0.0013269952, 2.1766558e-05, 0.99841356, 0.00015300694, 6.9472035e-06, 1.3277059e-05, 6.1860555e-05, 3.4072806e-07, 1.1205097e-05, 0.99997175, 1.9948227e-07, 6.9880834e-08, 3.3387135e-08, 5.2603138e-08, 3.0352305e-07, 4.3738982e-08, 5.3243946e-07, 1.5870584e-05, 0.0006525102, 0.013322109, 1.480307e-06, 0.9766325, 4.9847167e-05, 0.00058075984, 0.008405659, 5.2234273e-06, 0.00023390084, 0.000116047224, 1.6682397e-06, 5.7737526e-10, 0.9975605, 6.45564e-05, 0.002371972, 1.0392675e-07, 9.747962e-08, 1.4484569e-07, 8.762438e-07, 2.4758325e-08, 5.028761e-09, 6.856381e-11, 5.9932094e-12, 4.921233e-10, 1.471166e-07, 2.7940719e-06, 3.4563383e-09, 0.99999714, 5.9420524e-10, 9.445026e-11, 4.1854888e-05, 5.041549e-08, 8.0302314e-08, 1.2119854e-07, 6.781646e-09, 1.2616152e-08, 1.1878505e-08, 1.628573e-09, 0.9999578, 3.281738e-08, 0.08930307, 1.4065135e-07, 4.1117343e-07, 0.90898305, 8.933351e-07, 0.0015637449, 0.00013868928, 9.092981e-06, 4.8759745e-07, 4.3976044e-07, 0.00016094849, 3.5653954e-07, 0.0760521, 0.8927447, 0.0011777573, 0.00265573, 0.027189083, 4.1892267e-06, 1.329405e-05, 1.8564688e-06, 1.3373891e-06, 1.0251247e-07, 8.651912e-09, 4.458202e-06, 1.4646349e-05, 1.260957e-06, 1.046087e-08, 0.9998946, 8.332438e-05, 3.900894e-07, 6.53852e-05, 3.012202e-08, 1.0247197e-07, 1.8824371e-06, 0.0004958526, 3.533475e-05, 2.739997e-07, 0.99939275, 4.840305e-06, 3.5346695e-06, 0.0005518078, 3.1597017e-07, 0.99902296, 0.00031509742, 8.07886e-07, 1.6366084e-06, 2.795575e-06, 6.112367e-06, 9.817249e-05, 2.602709e-07, 0.0004561966, 5.360607e-06, 2.8656412e-05, 0.000116040654, 6.881144e-05, 8.844774e-06, 4.4655946e-05, 3.5564542e-05, 0.006564381, 0.9926715, 0.007300911, 1.766928e-06, 3.0520596e-07, 0.026906287, 1.3769699e-06, 0.00027539674, 5.583593e-06, 3.792553e-06, 0.0003876767, 0.9651169, 0.18114138, 2.8360228e-05, 0.00019927241, 0.007685872, 0.00014663498, 3.9361137e-05, 5.941682e-05, 7.36174e-05, 0.79936546, 0.01126067, 2.3992783e-11, 7.6336457e-16, 1.4644799e-15, 1, 2.4652159e-14, 1.1786078e-10, 1.9402116e-13, 4.2408636e-15, 1.209294e-15, 2.9042784e-15, 1.5366902e-08, 1.2476195e-09, 1.3560152e-07, 0.999997, 4.3113017e-11, 2.8163534e-08, 2.4494727e-06, 1.3122828e-10, 3.8081083e-07, 2.1628158e-11, 0.0004926238, 6.9424555e-06, 2.827196e-05, 0.92534137, 9.500486e-06, 0.00036133997, 0.072713904, 1.2831057e-07, 0.0010457055, 2.8514464e-07], 'name': 'fc10', 'shape': [20, 10], 'datatype': 'FP32'}, {'data': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'name': 'is_outlier', 'shape': [1, 20], 'datatype': 'INT64', 'parameters': {'content_type': 'np'}}]}
seldon pipeline inspect cifar10-production.cifar10-drift.outputs.is_drift
seldon.default.model.cifar10-drift.outputs	cifeij8fh5ss738i5bp0	{"name":"is_drift", "datatype":"INT64", "shape":["1", "1"], "parameters":{"content_type":{"stringParam":"np"}}, "contents":{"int64Contents":["0"]}}
infer("cifar10-production.pipeline",20, "drift")
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
png
<Response [200]>
{'model_name': '', 'outputs': [{'data': [8.080701e-09, 2.3025173e-12, 2.2681688e-09, 1, 4.1828953e-11, 4.48467e-09, 3.216822e-08, 2.8404365e-13, 5.217064e-09, 3.3497323e-13, 0.96965235, 4.7030144e-06, 1.6964266e-07, 1.7355454e-05, 2.6667e-06, 1.9505828e-06, 1.1363079e-07, 3.3352034e-08, 0.030320557, 1.7086056e-07, 0.03725602, 6.8623276e-06, 7.5557014e-05, 0.00018132397, 2.2838503e-05, 0.000110639296, 2.3732607e-06, 2.1210687e-06, 0.9623351, 7.131072e-06, 0.999079, 4.207448e-09, 1.5788535e-08, 2.723756e-08, 2.6555508e-11, 2.1526697e-10, 2.7599315e-10, 2.0737433e-10, 0.0009210062, 3.0885383e-09, 6.665241e-07, 1.7765576e-09, 1.4911559e-07, 0.9765331, 1.9476123e-07, 2.8244015e-06, 0.023463126, 5.8030287e-09, 3.243206e-09, 1.12179785e-08, 4.4123663e-06, 4.7628927e-09, 1.1727273e-08, 0.9761534, 1.1409252e-08, 8.922882e-05, 0.023752932, 3.1563903e-08, 2.7916305e-09, 8.7746266e-10, 1.0166265e-05, 0.999703, 4.5408615e-05, 0.00022673907, 1.7365853e-07, 1.0147362e-06, 6.253448e-06, 2.9711526e-07, 7.811687e-07, 6.183683e-06, 0.86618125, 5.47548e-07, 0.00038408802, 0.013155022, 3.6916779e-06, 0.0006137024, 0.11965008, 3.6425424e-06, 6.7638084e-06, 1.2372367e-06, 1.9545263e-05, 1.1281859e-13, 1.6811868e-14, 0.9999777, 1.9805435e-11, 2.7563674e-06, 2.9651657e-09, 1.1363432e-12, 2.9902746e-13, 1.220973e-12, 2.9895918e-05, 3.4964305e-07, 1.1331837e-08, 1.7012125e-06, 3.6088227e-07, 3.035954e-08, 2.2102333e-06, 1.7414077e-08, 0.9999455, 1.9921794e-05, 0.9999999, 5.3446598e-11, 6.3188843e-10, 1.0956511e-07, 1.1538642e-10, 8.113561e-10, 4.7179572e-08, 1.4544753e-11, 5.490219e-08, 1.3347151e-10, 1.5363307e-07, 6.604881e-09, 2.424105e-10, 9.963063e-09, 3.9349533e-09, 1.5709017e-09, 7.705774e-10, 4.8085802e-08, 1.8885139e-05, 0.9999809, 7.147243e-08, 3.143131e-13, 2.1447092e-13, 0.00042652222, 6.945973e-12, 0.9995734, 6.174434e-09, 4.1128205e-11, 3.4031404e-13, 8.573159e-15, 1.2226405e-09, 2.3768018e-10, 2.822187e-07, 8.016278e-08, 4.0692296e-08, 6.8023346e-06, 2.3926754e-07, 0.9999925, 6.652648e-09, 7.743497e-09, 7.6360675e-06, 5.9386625e-09, 1.5675019e-09, 2.136716e-07, 1.3074002e-06, 3.700079e-10, 1.0984521e-09, 6.2138824e-08, 0.9609078, 0.03908287, 0.0008332255, 7.696685e-08, 2.4428939e-09, 7.186676e-05, 1.4520063e-09, 1.4521317e-08, 1.09093e-06, 1.2531165e-10, 0.9990938, 5.798501e-09, 5.785368e-05, 3.82365e-09, 7.404351e-08, 0.008338481, 8.048078e-10, 0.99157715, 1.1663455e-05, 1.4583546e-05, 8.3543476e-08, 3.274394e-08, 2.4682688e-05, 1.3951502e-09, 1.0260489e-08, 0.9998845, 1.9418138e-08, 8.667954e-07, 2.1851054e-07, 8.917964e-05, 4.4437223e-07, 1.1292918e-07, 4.5302792e-07, 5.631744e-08, 2.9086214e-08, 3.1013877e-07, 7.695681e-09, 2.1452344e-09, 1.1493902e-08, 6.1980093e-10, 0.99999917, 1.1436694e-08, 2.42685e-05, 8.557389e-08, 0.024081504, 0.0073837163, 4.8152968e-05, 5.128531e-07, 0.9684405, 9.630179e-08, 2.1060101e-05, 1.901065e-07], 'name': 'fc10', 'shape': [20, 10], 'datatype': 'FP32'}, {'data': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'name': 'is_outlier', 'shape': [1, 20], 'datatype': 'INT64', 'parameters': {'content_type': 'np'}}]}
seldon pipeline inspect cifar10-production.cifar10-drift.outputs.is_drift
seldon.default.model.cifar10-drift.outputs	cifeimgfh5ss738i5bpg	{"name":"is_drift", "datatype":"INT64", "shape":["1", "1"], "parameters":{"content_type":{"stringParam":"np"}}, "contents":{"int64Contents":["1"]}}
infer("cifar10-production.pipeline",1, "outlier")
png
<Response [200]>
{'model_name': '', 'outputs': [{'data': [6.3606867e-06, 0.0006106364, 0.0054279356, 0.6536454, 1.4738829e-05, 2.6104701e-06, 0.3397848, 1.3538776e-05, 0.0004458526, 4.807229e-05], 'name': 'fc10', 'shape': [1, 10], 'datatype': 'FP32'}, {'data': [1], 'name': 'is_outlier', 'shape': [1, 1], 'datatype': 'INT64', 'parameters': {'content_type': 'np'}}]}
infer("cifar10-production.pipeline",1, "ok")
png
<Response [200]>
{'model_name': '', 'outputs': [{'data': [1.45001495e-08, 1.2525752e-09, 1.6298458e-07, 0.11529388, 1.7431412e-07, 6.1856604e-06, 0.8846994, 6.0739285e-09, 7.43792e-08, 4.7317337e-09], 'name': 'fc10', 'shape': [1, 10], 'datatype': 'FP32'}, {'data': [0], 'name': 'is_outlier', 'shape': [1, 1], 'datatype': 'INT64', 'parameters': {'content_type': 'np'}}]}

Use the seldon CLI to look at the outputs from the CIFAR10 model. It will decode the Triton binary outputs for us.

seldon pipeline inspect cifar10-production.cifar10.outputs
seldon.default.model.cifar10.outputs	cifeiq8fh5ss738i5bqg	{"modelName":"cifar10_1", "modelVersion":"1", "outputs":[{"name":"fc10", "datatype":"FP32", "shape":["1", "10"], "contents":{"fp32Contents":[1.45001495e-8, 1.2525752e-9, 1.6298458e-7, 0.11529388, 1.7431412e-7, 0.0000061856604, 0.8846994, 6.0739285e-9, 7.43792e-8, 4.7317337e-9]}}]}
seldon pipeline unload cifar10-production
seldon model unload cifar10
seldon model unload cifar10-outlier
seldon model unload cifar10-drift

Last updated

Was this helpful?