Regression Metrics
MSE (Mean Squared Error)
Measures the average squared difference between predicted and actual values, penalizing larger errors:
MAE (Mean Absolute Error)
Measures the average absolute difference between predicted and actual values, reflecting the magnitude of errors:
RMSE (Root Mean Squared Error)
Represents the square root of MSE, interpretable in the same units as the target variable, highlighting larger errors:
Example
Below is an example of the regression metrics API usage:
import requests
url = f"http://{CLUSTER_IP}/metrics-server/api/v1/metrics/pipeline/regression"
params = {
'namespace': 'seldon',
'pipelineName': 'house-value-pipeline',
'modelName': 'house-value-model',
'startTime': '2025-02-25T16:02:28Z',
'endTime': '2025-02-25T16:04:28Z',
'interval': '5s'
}
response = requests.get(url, params=params)
Last updated
Was this helpful?