LogoLogo
search
Ctrlk
  • Overview
    • Introduction
    • Getting Started
    • Algorithm Overview
    • White-box and black-box models
    • Saving and loading
    • Frequently Asked Questions
  • Explanations
    • Methodschevron-right
    • Exampleschevron-right
      • Alibi Overview Examples
      • Accumulated Local Effetschevron-right
      • Anchorschevron-right
      • Contrastive Explanation Methodchevron-right
      • Counterfactual Instances on MNIST
      • Counterfactuals Guided by Prototypeschevron-right
      • Counterfactuals with Reinforcement Learningchevron-right
      • Integrated Gradientschevron-right
      • Kernel SHAPchevron-right
      • Partial Dependencechevron-right
        • Partial Dependence and Individual Conditional Expectation for predicting bike renting
      • Partial Dependence Variancechevron-right
      • Permutation Importancechevron-right
      • Similarity explanationschevron-right
      • Tree SHAPchevron-right
  • Model Confidence
    • Methodschevron-right
    • Exampleschevron-right
  • Prototypes
    • Methodschevron-right
    • Exampleschevron-right
  • API Reference
    • alibi.apichevron-right
    • alibi.confidencechevron-right
    • alibi.datasetschevron-right
    • alibi.exceptions
    • alibi.explainerschevron-right
    • alibi.modelschevron-right
    • alibi.prototypeschevron-right
    • alibi.saving
    • alibi.utilschevron-right
    • alibi.version
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. Explanationschevron-right
  2. Examples

Partial Dependence

Partial Dependence and Individual Conditional Expectation for predicting bike rentingchevron-right
PreviousKernel SHAP explanation for multinomial logistic regression modelschevron-leftNextPartial Dependence and Individual Conditional Expectation for predicting bike rentingchevron-right

Last updated 3 months ago

Was this helpful?

Was this helpful?