alibi.models.tensorflow.autoencoder

This module contains a Tensorflow general implementation of an autoencoder, by combining the encoder and the decoder module. In addition it provides an implementation of a heterogeneous autoencoder which includes a type checking of the output.

AE

Inherits from: Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable

Autoencoder. Standard autoencoder architecture. The model is composed from two submodules, the encoder and the decoder. The forward pass consists of passing the input to the encoder, obtain the input embedding and pass the embedding through the decoder. The abstraction can be used for multiple data modalities.

Constructor

AE(self, encoder: keras.src.models.model.Model, decoder: keras.src.models.model.Model, **kwargs) -> None
Name
Type
Default
Description

encoder

keras.src.models.model.Model

Encoder network.

decoder

keras.src.models.model.Model

Decoder network.

Methods

call

call(x: tensorflow.python.framework.tensor.Tensor, kwargs) -> Union[tensorflow.python.framework.tensor.Tensor, List[tensorflow.python.framework.tensor.Tensor]]
Name
Type
Default
Description

x

tensorflow.python.framework.tensor.Tensor

Input tensor.

**kwargs

Other arguments passed to encoder/decoder call method.

Returns

  • Type: Union[tensorflow.python.framework.tensor.Tensor, List[tensorflow.python.framework.tensor.Tensor]]

HeAE

Inherits from: AE, Model, TensorFlowTrainer, Trainer, Layer, TFLayer, KerasAutoTrackable, AutoTrackable, Trackable, Operation, KerasSaveable

Heterogeneous autoencoder. The model follows the standard autoencoder architecture and includes and additional type check to ensure that the output of the model is a list of tensors. For more details, see :py:class:alibi.models.pytorch.autoencoder.AE.

Constructor

HeAE(self, encoder: keras.src.models.model.Model, decoder: keras.src.models.model.Model, **kwargs) -> None
Name
Type
Default
Description

encoder

keras.src.models.model.Model

Encoder network.

decoder

keras.src.models.model.Model

Decoder network.

Methods

build

build(input_shape: Tuple[int, .Ellipsis]) -> None
Name
Type
Default
Description

input_shape

Tuple[int, .Ellipsis]

Tensor's input shape.

Returns

  • Type: None

call

call(x: tensorflow.python.framework.tensor.Tensor, kwargs) -> List[tensorflow.python.framework.tensor.Tensor]
Name
Type
Default
Description

x

tensorflow.python.framework.tensor.Tensor

Input tensor.

**kwargs

Other arguments passed to the encoder/decoder.

Returns

  • Type: List[tensorflow.python.framework.tensor.Tensor]

Last updated

Was this helpful?