alibi.models.pytorch.autoencoder
This module contains a Pytorch general implementation of an autoencoder, by combining the encoder and the decoder module. In addition it provides an implementation of a heterogeneous autoencoder which includes a type checking of the output.
AE
AE
Inherits from: Model
, Module
Autoencoder. Standard autoencoder architecture. The model is composed from two submodules, the encoder and the decoder. The forward pass consist of passing the input to the encoder, obtain the input embedding and pass the embedding through the decoder. The abstraction can be used for multiple data modalities.
Constructor
AE(self, encoder: torch.nn.modules.module.Module, decoder: torch.nn.modules.module.Module, **kwargs)
encoder
torch.nn.modules.module.Module
Encoder network.
decoder
torch.nn.modules.module.Module
Decoder network.
Methods
forward
forward
forward(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]
x
torch.Tensor
Input tensor.
Returns
Type:
Union[torch.Tensor, List[torch.Tensor]]
HeAE
HeAE
Inherits from: AE
, Model
, Module
Heterogeneous autoencoder. The model follows the standard autoencoder architecture and includes and additional type check to ensure that the output of the model is a list of tensors. For more details, see :py:class:alibi.models.pytorch.autoencoder.AE
.
Constructor
HeAE(self, encoder: torch.nn.modules.module.Module, decoder: torch.nn.modules.module.Module, **kwargs)
encoder
torch.nn.modules.module.Module
Encoder network.
decoder
torch.nn.modules.module.Module
Decoder network.
Methods
forward
forward
forward(x: torch.Tensor) -> List[torch.Tensor]
x
torch.Tensor
Input tensor.
Returns
Type:
List[torch.Tensor]
Last updated
Was this helpful?