alibi.explainers.similarity.base
Constants
TYPE_CHECKING
TYPE_CHECKINGTYPE_CHECKING: bool = Falsebool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
has_pytorch
has_pytorchhas_pytorch: bool = Truebool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
has_tensorflow
has_tensorflowhas_tensorflow: bool = Truebool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
BaseSimilarityExplainer
BaseSimilarityExplainerInherits from: Explainer, ABC, Base
Base class for similarity explainers.
Constructor
predictor
Union[tensorflow.keras.Model, torch.nn.Module]
Model to be explained.
loss_fn
`Union[Callable[[tensorflow.Tensor, tensorflow.Tensor], tensorflow.Tensor],
| sim_fn | Callable[[.[<class 'numpy.ndarray'>, <class 'numpy.ndarray'>]], numpy.ndarray] | | Similarity function. Takes two inputs and returns a similarity value. | | precompute_grads | bool | False | Whether to precompute and store the gradients when fitting. | | backend | alibi.utils.frameworks.Framework | <Framework.TENSORFLOW: 'tensorflow'> | Deep learning backend. | | device | Union[int, str, torch.device, None] | None | Device to be used. Will default to the same device the backend defaults to. | | meta | Optional[dict] | None | Metadata specific to explainers that inherit from this class. Should be initialized in the child class and passed in here. Is used in the __init__ of the base Explainer class. | | verbose | bool | False | |
Methods
fit
fitX_train
Union[numpy.ndarray, List[typing.Any]]
Training data.
Y_train
numpy.ndarray
Training labels.
Returns
Type:
alibi.api.interfaces.Explainer
reset_predictor
reset_predictorpredictor
Union[tensorflow.keras.Model, torch.nn.Module]
The new predictor to use.
Returns
Type:
None
Last updated
Was this helpful?

