alibi.explainers.similarity.base
Constants
TYPE_CHECKING
TYPE_CHECKING
TYPE_CHECKING: bool = False
bool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
has_pytorch
has_pytorch
has_pytorch: bool = True
bool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
has_tensorflow
has_tensorflow
has_tensorflow: bool = True
bool(x) -> bool
Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
BaseSimilarityExplainer
BaseSimilarityExplainer
Inherits from: Explainer
, ABC
, Base
Base class for similarity explainers.
Constructor
BaseSimilarityExplainer(self, predictor: 'Union[tensorflow.keras.Model, torch.nn.Module]', loss_fn: 'Union[Callable[[tensorflow.Tensor, tensorflow.Tensor], tensorflow.Tensor],\n Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]', sim_fn: Callable[[numpy.ndarray, numpy.ndarray], numpy.ndarray], precompute_grads: bool = False, backend: alibi.utils.frameworks.Framework = <Framework.TENSORFLOW: 'tensorflow'>, device: 'Union[int, str, torch.device, None]' = None, meta: Optional[dict] = None, verbose: bool = False)
predictor
Union[tensorflow.keras.Model, torch.nn.Module]
Model to be explained.
loss_fn
`Union[Callable[[tensorflow.Tensor, tensorflow.Tensor], tensorflow.Tensor],
Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]` | | Loss function. |
| sim_fn
| Callable[[.[<class 'numpy.ndarray'>, <class 'numpy.ndarray'>]], numpy.ndarray]
| | Similarity function. Takes two inputs and returns a similarity value. | | precompute_grads
| bool
| False
| Whether to precompute and store the gradients when fitting. | | backend
| alibi.utils.frameworks.Framework
| <Framework.TENSORFLOW: 'tensorflow'>
| Deep learning backend. | | device
| Union[int, str, torch.device, None]
| None
| Device to be used. Will default to the same device the backend defaults to. | | meta
| Optional[dict]
| None
| Metadata specific to explainers that inherit from this class. Should be initialized in the child class and passed in here. Is used in the __init__
of the base Explainer class. | | verbose
| bool
| False
| |
Methods
fit
fit
fit(X_train: Union[numpy.ndarray, List[typing.Any]], Y_train: numpy.ndarray) -> alibi.api.interfaces.Explainer
X_train
Union[numpy.ndarray, List[typing.Any]]
Training data.
Y_train
numpy.ndarray
Training labels.
Returns
Type:
alibi.api.interfaces.Explainer
reset_predictor
reset_predictor
reset_predictor(predictor: Union[tensorflow.keras.Model, torch.nn.Module]) -> None
predictor
Union[tensorflow.keras.Model, torch.nn.Module]
The new predictor to use.
Returns
Type:
None
Last updated
Was this helpful?