alibi.explainers.backends.cfrl_base
This module contains utility functions for the Counterfactual with Reinforcement Learning base class, :py:class:alibi.explainers.cfrl_base
, that are common for both Tensorflow and Pytorch backends.
CounterfactualRLDataset
CounterfactualRLDataset
Inherits from: ABC
Methods
predict_batches
predict_batches
predict_batches(X: numpy.ndarray, predictor: Callable, batch_size: int) -> numpy.ndarray
X
numpy.ndarray
Input to be classified.
predictor
Callable
Prediction function.
batch_size
int
Maximum batch size to be used during each inference step.
Returns
Type:
numpy.ndarray
Functions
generate_empty_condition
generate_empty_condition
generate_empty_condition(X: typing.Any) -> None
Empty conditioning.
X
typing.Any
Input instance.
Returns
Type:
None
get_classification_reward
get_classification_reward
get_classification_reward(Y_pred: numpy.ndarray, Y_true: numpy.ndarray)
Computes classification reward per instance given the prediction output and the true label. The classification reward is a sparse/binary reward: 1 if the most likely classes from the prediction output and the label match, 0 otherwise.
Y_pred
numpy.ndarray
Prediction output as a distribution over the possible classes.
Y_true
numpy.ndarray
True label as a distribution over the possible classes.
get_hard_distribution
get_hard_distribution
get_hard_distribution(Y: numpy.ndarray, num_classes: Optional[int] = None) -> numpy.ndarray
Constructs the hard label distribution (one-hot encoding).
Y
numpy.ndarray
Prediction array. Can be soft or hard label distribution, or a label.
num_classes
Optional[int]
None
Number of classes to be considered.
Returns
Type:
numpy.ndarray
identity_function
identity_function
identity_function(X: typing.Any) -> typing.Any
Identity function.
X
typing.Any
Input instance.
Returns
Type:
typing.Any
Last updated
Was this helpful?